現代社会と化学

第15回 染料の化学

染料

天然染料

植物染料:アイ(藍)、アカネ(茜)、

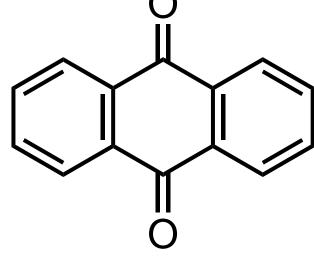
ベニバナ、ムラサキ(紫根)

動物染料:カイムラサキ、コチニール

合成染料

アリザリン(茜色素)、インジゴ(藍色素)、 アゾ染料

蛍光染料


色素が蛍光物質である染料

分子が色をもつためにはどのような 分子構造が必要か?

長い共役二重結合系を有するものが多い。 特に、アゾ基やアントラキノン構造をもつ平 面構造のものが多い。

-N=N-

アゾ基

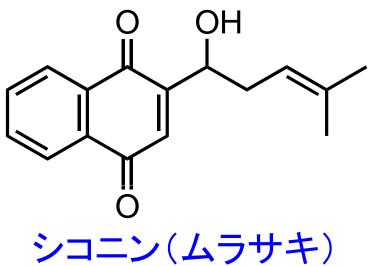
アントラキノン

天然染料

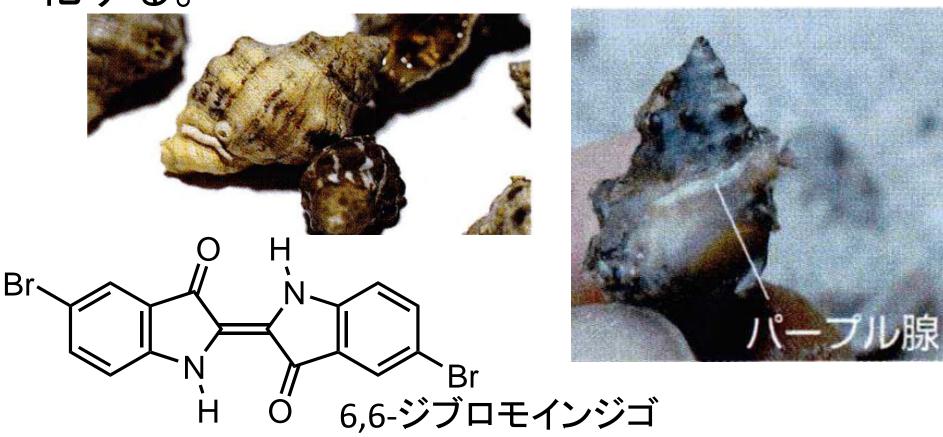
藍(アイ) タデアイ(タデ科の一年草)の葉を発酵させることによってインジゴが得られる。

描(アカネ) アカネ(アカネ科の多年草)の根からアリザリンが得られる。

紅花(ベニバナ) ベニバナの花弁に含まれる 黄色素を酸化させ、紅色素のカルタミンを生


成させる。

紫根(シコン) ムラサキ(ムラサキ科の多年草)の根から染料(シコニン)が得られる。



カイムラサキ

イボニシなどの貝類から得られる染料。 内臓の黄緑色のパープル腺の中身を布にこすりつけ、酸素と紫外線にさらすと紫色に変化する。

コチニール

ウチワサボテンに寄生するカイガラムシの一種。乾燥させ、水またはエタノールで抽出して

色素としたもの。

合成染料

1856年 モーブ(アニリン染料・紫色素)

1862年、ロンドン万国博覧会においてビクトリア女王がモーブで染色した絹のガウンをまとった。

1869年 アリザリン(茜色素) 天然色素の 1880年 インジゴ(藍色素) 人工合成

アゾ染料(合成染料の半数以上)

種々の置換基を導入できるため、様々な生地 に適した染料を合成できる。

蛍光染料

<mark>蛍光を発する染料</mark>で繊維を染めることにより、 黄色の黄ばみを目立たなくする。

蛍光増白剤もこの一種であり、洗剤に添加されたり、製紙工程で使用される。

ビス(トリアジニルアミド)スチルベンジスルホン酸誘導体 (木綿用蛍光増白剤では主流)

染色のしくみ

染料が繊維に化学結合または吸着する

染料と繊維の相互作用が重要

染料の種類

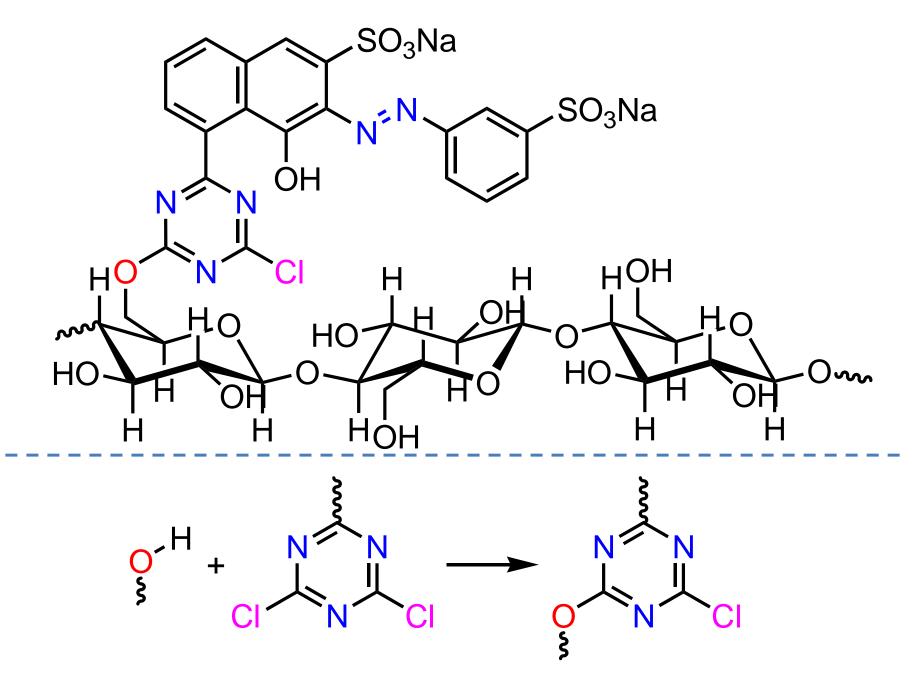
- ●直接染料
- ●酸性染料
- ●塩基性染料
- ●分散染料
- ●反応染料

- ●媒染染料
- ●建染染料

●直接染料・・・水素結合で結合する。 動植物繊維、とくにセルロース系繊維によく用いられる。

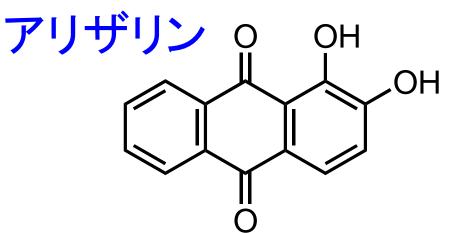
●酸性染料

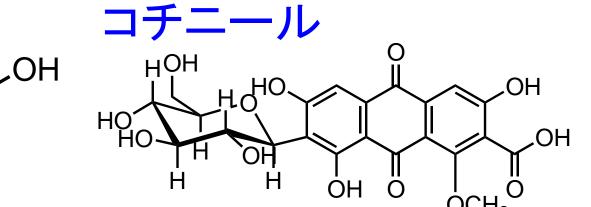
SO3 基をもち、酸性浴中で繊維のアミノ基とイオン結合する。動物繊維、ナイロンによく用いられる。

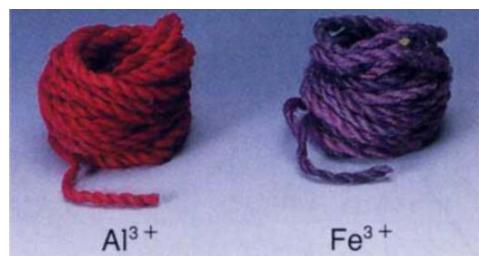

●塩基性染料

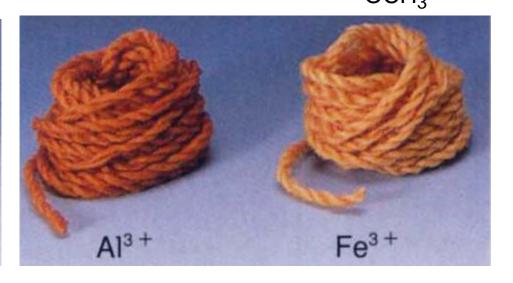
アミノ基をもち、酸性浴中で繊維のカルボキシル基とイオン結合する。動物繊維、ナイロンによく用いられる。

●分散染料


分子間力で結合する。水難溶性であり、 水浴中で微小粒子に分散して、疎水性合成 繊維に染まる。


●反応染料・・・繊維と反応して共有結合する。




●媒染染料

あらかじめ繊維にAI³⁺、Cr³⁺、Fe³⁺などの金属を吸着させた後に染色すると、不溶性の塩が生成する。セルロース系繊維に用いられる。

●建染染料

水に不溶であるが、還元剤で処理すると可溶となる。繊維に吸着させた後、空気酸化して元の染料に戻す。