- Answer the questions below in Japanese or English. The language of statement logic that we worked with in class is called language L throughout the exam questions.
- A. Draw a formation tree for (1) and construct its truth table. Provide the leftmost columns for the truth values of atomic statements and the final column. Additionally, say which type of statement (1) belongs to, a tautology, a contradiction, or a contingency.
- (1) $(\sim (p \rightarrow p) \land (q \land r))$

Formation tree	Truth tab	Truth table			
CUCD->P)N(BNY))	Par	PGT P=P ~(P=P)(9/11)K			A(gar)
(0.45)	000	!	0	0 0	
~(p=p) 1 (911)	010	1	0	0 0	
The second of th	011	!	0	1 0	
~ (p->p) 9 /1 /1	100	1	0	0 0	
2 20	110	1	0	0 0	
7 - 1	1111	11	0 1	1 1 0	
	S. Marie				
Statement type:	autra dic	+:00			
a c	ontradic	(101)			

- B. Suppose that someone proposes (2) as the syntax of a language of statement logic. The language has the same vocabulary as language L, but its syntax is slightly different, as can be recognized in (2). Say whether or not each of the strings of symbols given in (3) is a well-formed formula (wff) when (2) is assumed. Also, briefly discuss, in each case, whether the result obtained is good news or bad news for those who advocate (2), given that statement logic is a model of natural language.
- (2) i. Any atomic statements are wff's.
 - ii. If X is an atomic statement, then $\sim X$ is a wff.
 - iii. If X and Y are atomic statements, then $(X \vee Y)$, $(X \wedge Y)$, $(X \to Y)$, and $(X \leftrightarrow Y)$ are all wff's.
 - iv. Nothing else is a wff.
- (3) a. Vs
 - b. (~s \(t \)

	Well-formed?	Good result or bad result?
(3)a	wffcittic	bad news
(3)b	wffではない	good news

- C. (5) is the truth table for the Japanese sentence in (4). Based on what you think is the most natural interpretation of this Japanese sentence, complete the table by giving "1" or "0" in the rightmost column.
- (4) 花子は先生がパーティに来ない時しかパーティに来ないなあ。

ap

(5)

	先生がパーティに	先生がパーティに 花子がパーティに	
状況 1	来る	来る	(4)
状况 2	来る	来ない	1
状況3	来ない	来る	A
状況 4	来ない	来ない	1

- D. Translate (4) into statement logic, assuming that p and q are associated with Japanese sentences in the way shown in (6). Your answer must be consistent with your answer to Question C.
- (6) p: 先生がパーティに来る。 q: 花子がパーティに来る。

9 -> ~p

E. The derivation in (7) is problematic. Discuss its problems.

(7) 1. $(p \land \sim p) \rightarrow q$ Premise 2. $\sim \sim r \rightarrow \sim (p \rightarrow q)$ Premise 3. $r \rightarrow \sim (p \rightarrow q)$ 2 Compl. [Sub.]

4. $p \rightarrow q$ 1 Simpl. [Sub.]

5. ~r 3, 4 M.T.

4. ご1、にPules of Inference の Simplificationを (pハルカ)の部分のみに適用しているが、Rules of Inference は真である発行にしか適用できず、(pハルカ)が真であることは示されていない。むしろ、Complement Lawsにより (カハルカ)はイ為である。したがって、(7)の言正明はで商しなである。

- F. Passage (8) is from Partee et al. 1993, p. 121, where "the proof above" refers to the proof cited in (9). Explain the paragraph. Make your answer specific, as opposed to too general.
- (8) name: We derive (r & $\sim r$). By the rule of conditional proof in the following way. Adding the auxiliary premise $\sim p$ in the proof above, for example, we derive $(r \& \sim r)$. By the rule of conditional proof we get $(r \& \sim r)$. As the next line we add the tautology $\sim (r \& \sim r)$: a captology can be written down as a valid step anywhere in any proof since it can never be false. Then we derive $\sim p$ by Modus Tollens and then p to the Complement Law.
- (9) Prove p from $(p \lor q)$, $(q \to r)$ and $\sim r$
 - 1. p V q
 - 2. q → r
 - 3. ~ ₹
 - 4. | ~ p Auxiliary Premise
 - 5. q 1, 4 D.S.
 - 6. r 2, 5 M.P.
 - 7. r& ~r 3,6 Conj.
 - 8. p 4-7 Indirect Proof

間接的証明は、次のようにして条件付き証明の特別な形式であると見なすことができる。例れば、自分はにかを仮定に(アルート)を示したとする。条件付き証明のルールによれば、これがらしか一つといるへい)が得られる。次に恒真女であっていため、いかなる証明にも有効な手順として書くことができる。そして、Modus Tollensによってへかが示され、さらにComplement Lawによってかが示される。

G. Prove (10)a, b. Use conditional proof for (10)a. Give each line a justification.

(10)a.
$$p \rightarrow (q \land r)$$

 $\therefore (q \rightarrow s) \rightarrow (p \rightarrow s)$
 $\uparrow \cdot p \rightarrow (q \land r)$
 $\downarrow \cdot p \rightarrow (q \land r)$
 $\downarrow \cdot (q \rightarrow s) \rightarrow (p \rightarrow s)$

b.
$$p$$

$$p \to q$$

$$\sim r \to \sim q$$

$$\therefore \sim (p \to \sim r)$$


```
(10)b.
            Premise
          Premise
3. r-> ~ & Premise
4. % 2,1 M.P.
5. 22 4 Compl.
6. nar 3,5 M.T.
7. pran 1,6 Conj.
8. 22p 1 nr 7 Compl. [Sub]
9~ (~p var) 8 DeM.
10 ~ (p → ~r) 9 Cond.[Sub]
(10)a.
1. 12->(9, 1r) Premise
2.1 92->5 Aux. Frem.
3. LPV(GAr) 1 Cond.
4. (apva)1(apvr) 3 Distr.
5. 2pv9. 4 Simp.
6. p→9. 5 Cond.
7. p→5 7,2 H.S.
8 (glass) -> (p->s) 2-7 Conditional Proof
```