

目次

1.	はじめに	3
2.	目的	3
3.	適用文書	3
4.	熱システムのモデル化	4
4.1	前提条件	4
4.2	モデル	5
4.3	差分化	6
4.4	シミュレーション	8
4.5	実験との比較	9
4.5	5.1 試験コンフィギュレーション	9
4.5	5.2 試験条件	10
4.5	5.3 試験結果	10
4.6	ソースコード	12

1. はじめに

ペルチェ設計(ペルチェ素子を用いた温度制御システム)におけるモデルの妥当性を評価す るために実験を行った。

2. 目的

本文書は、ペルチェ素子による温度制御システムのモデル化を行い、実験を行うことによっ て、モデルの妥当性を評価することを目的とする。

3. 適用文書

適用文書を以下に示す。 C06003-SF01 「仕様書ペルチェモジュール FPH1-3103NC」

4. 熱システムのモデル化

4.1 前提条件

以下、表1に熱システムのパラメータを示す。

No		項目	内容	備考
1	ペルチェ素子	型番	FPH1-3103NC	フジタカ製
		最大電流 Imax	3.0[A]	
		最大電圧 Vmax	3.8[V]	
		最大吸熱量	7.3[W]	Th = 27[deg]時
			8.0[W]	Th = 50[deg]時
		抵抗値	1.0 Ω ± 10%	
		制御時間で	600[sec]	
	ヒートシンク	型番	23M80L50	
		材質	アルミニウム	
		表面積	212.5[cm ²]	
		熱抵抗 $ heta$	5[deg/W]	
		温度 Th	ヒートシンクの温度[deg]	
	サーミスタ	型番	103JT-100	
2		抵抗値	10[kΩ]	25[deg]時
		許容差	±1%	
		B 定数	3435[K] ±1%	
		使用温度範囲	-50~90[deg]	
	対象物	材質	アルミニウム	冷却の対象物体
3		寸法	90×90×6[mm]	
		比熱 C	881[J/kg·K]	
		密度 <i>ρ</i>	2700[kg/m ³]	
		温度 Tc	アルミ温度[deg]	
		熱容量 CAL	115.6[J/K]	
	断熱材	材質	発泡スチール	
		厚み t	15[mm]	最小値を採用
		熱伝導率 λ	0.025[W/mK]	
		断熱面積 S _D	0.01436 [m ²]	下面・側面・上面を含む
	環境条件	常温 Te	22.99[deg]	実測と合わせたため
		空気の熱伝達率α	50[W/m ² K]	
		空気と対象物の接触面積 Sa	0.004 [m ²]	

表 1 前提条件

4.2 モデル

以下、図 1 に熱システムのモデルを示す。想定する熱システムは、ペルチェを用いて、アル ミを熱輸送によって冷却するシステムである。輸送した熱はヒートシンクを介して、周囲に排熱 される。特に明記しない限りは、表 1 のパラメータを使用する。本モデルではペルチェーヒート シンク間、ペルチェーアルミ間の熱抵抗は十分小さいものとし、無視する。また、周囲温度は一 定とした。

図 1 熱システムのモデル

上記の熱システムの数学モデルを以下に示す。

$$C_{AL}\frac{dT_c}{dt} = Q_{in} + Q_{air} + Q_{\tau} - Q_c \qquad (1)$$

ここで、CALは対象物(アルミ)の熱容量である。Qinは断熱材を介してアルミに流入する熱量、 Qair は空気と接触している面から流入する熱量、Q τ はアルミをある温度 Tc にするために輸 送しなければならない熱量である。ここで、Qin・Qair・Q τ は以下のように表される。

$$Q_{in} = Q_{in}(T_e, T_c) = \frac{S_D(T_e - T_c)}{0.137 + t/\lambda}$$
 (2)

 $Q_{air} = Q_{air}(T_e, T_c) = S_a \alpha (T_e - T_c)$ ⁽³⁾

$$Q_{\tau} = Q_{\tau}(T_{\rm e}, T_{\rm c}) = \frac{\mathrm{C}\rho(T_{\rm e} - T_{\rm c})}{\tau}$$

Qin におけるt は時間ではなく断熱材の厚みtである(値は表 1を参照のこと)。次に、QcとQiv は共にペルチェ素子における熱量である。Qc がペルチェが輸送する熱量、Qiv はペルチェに 流れる電流によって発熱する熱量である。ここで、Qc・Qiv は以下のように表される。

$$Q_c = Q_c(T_h, T_c, I) = A(T_h - T_c) + B$$
 (5)

$$Q_{iv} = Q_{iv}(I, V) = IV$$
(6)

ここで、ペルチェが輸送する熱量QcのA、B値はペルチェ素子のデータシート¹から算出する。 データシートから値を読み取り²、最小二乗法によりA、B値を求める。

図 2 ペルチェ特性図

ここでは、ペルチェに 1.2[A]の電流値を流す場合を想定する。図 2 から A、B 値は、 A = -0.1045、 B = 5.0678

となる。Qivは、図 2からもわかるように温度によって変化する。一般的に温度差が大きくなる ほど、ペルチェの消費電力も大きくなる。ここでは、1.2[A]を流した場合、電圧は 2[V]とし、

$$Q_{iv} = 1.2 \times 2 = 2.4$$

とする。次に、ヒートシンクの温度 Th は周囲の温度とヒートシンクの熱抵抗θから求められる。 Th は、以下のように書ける。

$$T_h = T_e + (Q_c + Q_{iv})\theta$$
(7)

したがって、Qc は以下のように書ける。

$$Q_c = Q_c(T_h, T_c, 1.2) = -0.1045(T_h - T_c) + 5.0678$$

4.3 差分化

上節で立てた数学モデルを差分化し、コンピュータ上で演算可能な式を導出する。ここでは、 最も単純な前進差分法を使用する。①式より、

$$\frac{\mathrm{d}T_c}{\mathrm{d}t} = \frac{Q_{in} + Q_{air} + Q_\tau - Q_c}{\mathrm{C}_{\mathrm{AL}}} \tag{8}$$

ここで、時間微分を有限時間∆tに置き換えると、

¹ 仕様書ペルチェモジュール FPH1-3103NC を参照のこと。

² フリーソフトウェアの「DigitalCurveTracer」などを用いるとよい。

$$\frac{\mathrm{d}T_{c}}{\mathrm{d}t} \approx \frac{T_{c}^{n} - T_{c}^{n-1}}{\Delta t} = \frac{Q_{in}^{n-1} + Q_{air}^{n-1} + Q_{\tau}^{n-1} - Q_{c}^{n-1}}{\mathrm{C}_{\mathrm{AL}}}$$

よって、解くべき方程式は、

$$T_{c}^{n} = T_{c}^{n-1} + \frac{\Delta t}{C_{AL}} \left(Q_{in}^{n-1} + Q_{air}^{n-1} + Q_{\tau}^{n-1} - Q_{c}^{n-1} \right)$$
 (9)

となる。ここで、微分を差分化したことによって、時間空間は離散化される。そのため、方程式 を解くということは、時刻Δtごとにおけるアルミ温度 T。"を求めることとなる。同様にして、②か ら⑦式を差分化すると、

$$Q_{in}^{n-1} = \frac{S_{\rm D}(T_{\rm e} - T_{c}^{n-1})}{0.137 + t/\lambda}$$
 (1)

$$Q_{air}^{n-1} = \mathbf{S}_{a} \alpha (\mathbf{T}_{e} - T_{c}^{n-1})$$
 (1)

$$Q_{\tau}^{n-1} = \frac{C\rho(T_{e} - T_{c}^{n-1})}{\tau}$$

となる。次に、QcとThの差分化であるが、

$$Q_c^{n-1} = A(T_h^{n-1} - T_c^{n-1}) + B$$

 $T_h^{n-1} = T_e + (Q_c^{n-1} + Q_{iv})\theta$

となり、未知数が互いの式に入っており、このままでは解くことができないので、両式を連立し 解くと、

$$Q_{c}^{n-1} = \frac{A(T_{e} + Q_{iv} - T_{c}^{n-1}) + B}{1 - A\theta}$$
(3)

$$T_h^{n-1} = T_e + Q_{iv}\theta + Q_c^{n-1}$$

となる。以上より、解くべき方程式⑨~⑭式が求まった。

4.4 シミュレーション

上節で求めた方程式を使って、熱システムのシミュレーションを行う。表 2 にシミュレーショ ンパラメータを示す。

表 2 シミュレーションパラメータ

No	パラメータ	値
1	刻み幅 Δt	0.01
2	計算回数	200,000

計算フローを以下、図 3 に示す。

図 3 計算フロー

図 3 の計算フローにてシミュレーションを行った結果を以下、図 4 に示す。計算には、C 言語 (ANSI 規格準拠)を用いた。計算結果をテキスト出力し、エクセルにてグラフ化している。計算に使用したソースコードを本文書末に記載する。

図 4 シミュレーション結果

シミュレーションの結果、アルミ温度は、17.5[deg]付近で飽和することが分かる。

4.5 実験との比較

熱システムの試験を行い、シミュレーションの妥当性を評価する。試験は表 1 からなる熱シ ステムを構築し行った。

4.5.1 試験コンフィギュレーション

図 5 に試験コンフィギュレーションを示す。電力供給には、安定化電源を使用した。また、 温度計測にはサーミスタを使用し、テスターを用いて抵抗値を計測し、温度に換算した。

図 5 試験コンフィギュレーション

製作した熱システムを図 6 に示す。アルミとヒートシンクの間にペルチェを挿入している。 アルミとヒートシンクはネジで締結しており、ネジ経由での熱伝導を防ぐため、ポリワッシャ ーを 2 重にして使用している。また、ペルチェには熱伝導グリスを塗布し、アルミとヒートシ ンクへの熱伝導を向上した。

図 6 製作した熱システム

4.5.2 試験条件

以下に試験条件を示す。

No	項目	内容		
1	実施日	2009/12/04		
2	場所	****		
3	周囲温度	約 23[deg]		
4	設定電圧	CV 3.8[V]		
5	設定電流	CC 1.2[A]		
6	測定間隔	1[min]		

表 3 試験条件

4.5.3 試験結果

試験結果を図 7 に示す。電圧はアルミの温度低下と共に増加する傾向が見られた。電 流値は、1.2[A]の一定であった。ペルチェの温度差が大きくなるほど、熱輸送のために必 要な電力が増加したためだと考えられる。

図 4 のシミュレーション結果に試験結果を入れたグラフを図 8 に示す。試験結果とシミ ュレーションは、良い一致を得た。飽和に達する前までは、シミュレーションの方が、温度 が低く、飽和後は実測値の方が、温度が低い。シミュレーションの飽和値が実測より高い のは、外部からの熱流量が多めに見積もられていると考えられる。その他の誤差原因とし て、物性値の誤差、サーミスタ抵抗値から温度変換への誤差、モデルの誤差が考えられ る。熱に関する設定は、電気設計と異なり、熱パスの想定の難しさがある。そのため、設 計する系の簡易モデルをシミュレーション及び試験の結果をコリレーションすることによっ て、妥当性を評価することが有益かもしれない。

図 7 試験結果

図 8 試験とシミュレーションの結果

4.6 ソースコード

```
#include <stdio.h>
#include <math.h>
#define dt
                  0.01
                                             // 刻み幅[sec]
                  3.1415926
#define pi
                                             // 円周率
#define Loop
                  200000
                                             // 計算回数
#define STEP
                  6000
                                             // 出カステップ
                 22.99
#define Te
                                             // 初期周囲温度[deg]
#define Tc
                  0.0
                                             // 設定温度[deg]
#define Cal
                 115.60482
                                             // アルミの熱容量[J/K]
#define tau
                 600
                                             // 制御時間[sec]
#define ts
                 0.015
                                             // 断熱材の厚み[m]
                 0.025
#define lam
                                             // 断熱材の熱伝導率[W/mK]
#define Sd
                 0.01436
                                             // 断熱面積[m2]
#define Sa
                 0.004
                                             // 空気との接触面積[m2]
#define alp
                 50
                                             // 空気の熱伝導率[W/m2K]
                                             // アルミの比熱[J/kg・K]
#define C
                 881
#define V
                 (0.09*0.09*0.006)
                                             // アルミ板の体積[m3]
#define rho
                 2700
                                             // アルミの密度[kg/m3]
#define the
                 5
                                             // ヒートシンクの熱抵抗[deg/W]
#define Qiv
                 2.00
                                             // ペルチェ IV 発熱[W]
#define I
                 1.2
                                             // 電流[A]
#define A
                  -0.1045
                                             // 電流1.2[A]における係数1
#define B
                  5.0678
                                             // 電流1.2[A]における係数2
static double Tn;
                                             // アルミ温度[deg]未来
static double Ta;
                                             // アルミ温度[deg]現在
static double Qin;
                                             // 断熱材経由での熱
                                             // 空気経由での熱
static double Qair;
                                             // アルミからの熱
static double Qt:
static double Qc;
                                             // 輸送する熱 Qn
static double Qthe;
                                             // ヒートシンクの熱
int main(void)
{
         int i;
         double Qin = Qair = Qt = Qc = Qthe = 0;
         double Th = Tn = Tq = Te;
         for (i=0; i<Loop; i++)</pre>
         {
                  // Qin の計算
                  Qin = Sd*(Te-Tq)/(0.137+ts/lam);
                  // Qair の計算
                  Qair = Sa*alp*(Te-Tq);
                  // Qt の計算
                  Qt = C*rho*V*(Te-Tq)/tau;
                  // Qcの計算
                  Qc = (A*(Te+Qiv*the-Tq) + B)/(1-A*the);
                  Th = Te+Qiv*the+Qc;
                  // 熱方程式の解法
                  Tn = Tq + (Qin + Qair + Qt - Qc)*dt/Cal;
                  // 計算結果の表示
```