線形代数学 第二 U組(6類)期末試験 略解

作成者: さかな

2011年2月2日(水)実施

- 1 (1) $\Phi_A(x) = (x-1)(x-2)(x+2)$
 - (2) 1, 2, -2
 - (3) $x^2 + 4yz = A[\mathbf{x}]$ なので、 $x^2 + y^2 + z^2 = 1$ のとき、最大 (小) 値は最大 (小) の固有値. よって最大値: -2
 - (4) 2 に対する固有ベクトルはのうち、 $x^2+y^2+z^2=1$ を満たすものが $A[\mathbf{x}]$ を最大にするベクトルであり、それは $\pm \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ である.-2 についても同様に、 $\pm \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$ が得られる.
- $\boxed{2} \quad (1) \ \ A = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2}c \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2}c & \frac{1}{2} & 0 \end{pmatrix}$
 - (2) $\Phi_A(x) = \left(x + \frac{1}{2}c\right) \left(x^2 \frac{1}{2}cx \frac{1}{2}\right)$ より, $c \ge 0$ のときは最大の固有値は $\frac{c + \sqrt{c^2 + 8}}{4}$,最小の固有値は $-\frac{1}{2}c$ である.したがって, $c = \frac{7}{2}$ とすればよい.c < 0 のときは, $\frac{c \sqrt{c^2 + 8}}{4}$ のみ負であるから,最小固有値は $\frac{c \sqrt{c^2 + 8}}{4} = -\frac{7}{4}$ であり, $c = -\frac{41}{14}$ とすればよい.しかしこのとき,他の固有値のうち最大のものは2 ではない.よって不適.
- $\boxed{3} \quad (1) \quad \Phi_A(x) = \left(x^2 \frac{1}{2}x \frac{1}{4}\right)\left(x^2 + \frac{1}{2}x \frac{1}{4}\right)$
 - (2) $\frac{1 \pm \sqrt{5}}{4}, \frac{-1 \pm \sqrt{5}}{4}$
 - (3) 最大値は最大固有値の $\frac{1+\sqrt{5}}{4}$,最小値は最小固有値の $-\frac{1+\sqrt{5}}{4}$
- $\Phi_A(x)=x^3-abc=(x-(abc)^{1/3})(x^2+(abc)^{1/3}x+(abc)^{2/3})$ より,固有値は $\omega=\frac{-1+\sqrt{-3}}{2}$ として $(abc)^{1/3},(abc)^{1/3}\omega,(abc)^{1/3}\omega^2$ である。 $abc\neq 0$ なら,3 つの根はすべて異なるので,重根となる場合 abc=0 である.
 - (2) abc = 0 のとき、固有値は 0(重複度 3) である.このとき、固有空間 W(0) は a = b = c = 0 の場合を除いて 2 次元以下である (確認しよう!).よって a = b = c = 0 以外では対角化できない.a = b = c = 0 とすると、 $\dim W(0) = 3$ なので、対角化可能である. $abc \neq 0$ のとき、(1) で述べたとおり、3 つの異なる固有値があるので、対角化できる.以上から、求

める組は $s,t,u\in\mathbb{C}$ を任意定数として,(s,0,0),(0,t,0),(0,0,u),(s,t,0),(s,0,u),(0,t,u) である.