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Thermodynamic Bethe ansatz equations are suggested for RSOS scattering theories. which
describe the scattering of kinks in the field theories, corresponding to the perturbations of the
minimal CFT models ./,, by relevant operators 'P0 , 3) with negative coupling constant . The
equations turn to be of A,,_, type with a special choice of the mass terms. For the .1/, case
(tricritical Ising) the equations are studied numerically. This gives high precision data for the
Casimir energy of the finite-volume system . The analytic continuation in the coupling constant
results in reasonable numerical data for positive values of coupling . The data support the
interpretation of the positive-coupling field theory as the trajectory flowing from the tricritical
Ising fixed-point to the critical Ising one .

1 . Introduction

Recently the thermodynamic Bethe ansatz (TBA) approach was used success-
fully to describe the finite-temperature effects for a numbe of relativistic factor-
ized scattering theories (RFST) [1-6] . Conceptually, this approach simply specifies
the original ideas of Yang and Yang [7] for the case of relativistic scattering (see
refs . [2,51 for detailed description of the TBA approach). Relativistic invariance_
however, adds substantially to the interpretation possible . Suppose that some
RFST is consistent, i.e . describes the scattering in some relativistic field theory
(RFT) (note that this is not necessarily the case) . The finite-temperature free
energy . predicted by this scattering theory, can be interpreted as the Casimir
energy of the finite-volume periodic system (currently we have in mind the
euclidean field theory) . On the other hand, in RFT the small volume behavior of
the Casimir energy is described by the corresponding UV conformal field theory
(CFT) [8] . Therefore, studying the high-temperature limit of the TBA equations,
corresponding to some consistent RFST, one is able to identify the CFT, which
governs the UV behavior of the background RFT, and also the integrable CFT
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operator, drawing it out from the conformal fixed-point . This was the main line of
study in refs . [1-51 .

It seems important that in all the known relativistic examples the system ofTBA
equations has an impressively universal structure and can be related to the Dynkin
diagram of some simply-laced Lie algebra 3' [2,5,6] . In particular, the number of
equations coincides with the rank of the related algebra Y>' and these equations are
coupled in exactly the same way as the nodes of the corresponding Dynkin diagram
are [6] .
So far however, only diagonal (reflectionless) RFST's were explored in this way.

In the present paper the TBA equations are proposed for non-diagonal scattering
theories of kinks, which we call the (RSOS)� ; n = 2,3, . . . scattering theories . The
(RSOS)� scattering theory is based on an n-fold degenerate vacuum-structure, the
different vacua being associated with the nodes of the A � Dynkin diagram . Denote
the set of these nodes as .4l;, . There are local (in the space dimension) field
configurations, which link the vacua adjacent on the diagram. These configurations
are the stable relativistic kinks of the same mass in. Transitions between different
non-adjacent vacua can be arranged only by multikink states . This means that
there are 2 .= : - 2 different kinds of kinks (corresponding to the number 11 - 1 of
links on the A � diagram), which can be denoted as B«,,,, where a, /3 E ` /a are
incident nodes of the A � diagram . B(, is the one-dimensional configuration with
vacuum a to the left of the kink space-position and vacuum ß to the right . The
kink scattering is factorized and can be defined in terms of non-commuting
symbols [9,10] B, r,,(®), where 0 denotes the kink rapidity. Corresponding to the
two-kink scattering we have the foiiowing commutation relations

B,rY(®)By~(e~> _ ~ sa (e-®>>B~r,,(e,)8,, (e),
0

where a,,6, y, 8 E°Q~� and the summation is over the vacua 5 permitted by the
adjacency condition . The pair-scattering amplitudes Sr (e) are symmetric in both
pairs of indices S"'J3(0) = Spy(®) --- S"(0) and satisfy the crossing symmetry condi-
tions

SV~(e) =SYp
13 i7r-0),

	

(1 .2)

and also the unitarity and factorization equations, which can be considered as the
consistency conditions for the associative algebra of symbols B,, (0) . Essentially

13
these amplitudes coincide with IRF (interaction round a face) Boltzmann weights
of the exactly solvable RSOS (restricted solid-on-solid) lattice statistical models,
discovered by Andrews et al . [I 1 ] . That is why we call these RFST's the (RSOS)�
ones .
The simplest example (apart from the trivial (RSOS), scattering theory, where

kinks can be interpreted as the non-interacting massive particles) corresponds to



n = 3. In this case a = 0, ± runs over the three nodes of
is convenient to introduce new variable (r= ± to in
separately. There are four kinds of kinks B,,,, and
amplitudes

Q(O) = "(0) 1

which are symmetric in their indices 010) = &.,,(0
satisfy the crossing symmetry

unitaritv

Br=

and factorization constraints

Fig. 1 . Labeling of n

They have the following explicit form
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Qor 0)QO,S - 0) = 1 -

cs. on A -,

U(O) = 0,(i ,ï, -e),

nkin diagram .

G,,,,,.(O) =

	

,, t.,(

	

. and

(13)

where p=(1/2r)log2 i the constant necessary to provide the strict crossing
symmetry (1 .4) and WO) is the meromorphic function, which solves the system of
functional equations

o, (O)o, ( -0) = I/cosh(0/2),

	

(10)

and is free of zeros and poles in the strip 0 < Im 8 < 7-, . The following integral
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representation is most convenient for the purposes of the next section

At last

i
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f) t cosh- t/2 *

	

(1 .9)

f++( 0 ) = f__( 0 ) = cosh(0/4) ,

f+- (0) = f1 -(0) = sinh(0/4) ,

_, (0) = g_ _ (0) = cosh(8/4) - i sinh(0/4) ,

íg+-(0) = g + -(A) = cosh(0/4) + i sinh(0/4) ,

	

(1.10)

are entire 8i-,, -periodic functions of 0 . These explicit expressions will be of use
below to derive the TBA equations for the (RSOS)3 scattering theory . Explicit
expressions for the general (RSOS) � scattering amplitudes can be easily derived
from the weights of ref. [I 1 ] .

In ref. [1.7] the (RSOS)t , _ , scattering theories were suggested as the on-mass-
sheli data of the RFT's, which arise as the perturbation of the unitary CFT min-
imal models .//t , by the relevant scalar operator 0 = 41)0 .3) of dimension -1 =
(p - 1)/(p + 1) . These field theories (which we denote here by the symbol
.//A(,,:") can be defined by the perturbed action

A _,.x.x,=A _4,,+A

with real dimensional coupling constant A . The physical content of the theory
(1 .11) looks essentially different for different signs of the coupling constant . The
upper index near the symbol .l/A( t ' was introduced above just to distinguish
between these two different RFT's: .,//A( ,, ' for A > 0 and ZWt; ' for It < 0. In ref.
[ 12] it was argued that . //A(' is a massive field-theory with a finite correlation-
length . On the other hand, as it was demonstrated in refs . [ 13, 14] on the basis of
the perturbative renormalization group (RG), //A(,',' is a massless RFT with two
different CFT asymptotics in the ultraviolet (UV) and infrared OR) limits . From
the RG point of view it corresponds to the trajectory flowing from the .,, fixed
point to the one. The RG arguments are reliable only for p large, but this
picture is presumably true for all p > 3 (the case p = 3 is definitely an exception,
since ///A(_') =.CIA(; ') . Also it was observed in ref. [ 13] that this RG trajectory
comes to the

	

fixed point mainly along the direction, defined by the
irrelevant scalar operator (D(3 , )) of dimension "(3 ,, ) = (p + 2)/p . This means, that
in some not very strict sense one can consider IXA(, ' as the irrelevant perturbation
of Y~, _ ,

	

by the corresponding field (D( ;, , ), i .e .

+ yfO(3 . ,)( .) d-'x + (higher-dimension couaterterms) ,

	

(1 .12)
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where y is a coupling constant. This coupling has the dimension of an inverse
power of the mass scale and therefore is small in the IR region. Note, that the IR
perturbation theory, defined by the action (1 .12), is non-renormalizable and we
expect an infinite number of higher-dimension counterterms added in eq. (1 .12) . In
the case of Z/A'.i ' the IR CFT is (the critical Ising), which has no operator
"(3,, ) in the spectrum of local fields. Therefore the corresponding RG trajectory
comes to the ../í; fixed point along some other irrelevant operator. The most
natural guess is the CFT field TT [15], i.e ., the following IR action can be
suggested

A,,en~; =A,,, + gfTT( x ) d-'x + counterterms .

	

(1 .13)

The coupling g here has the dimension of (mass)--' . This form of effective action
is in agreement with the spontaneously broken supersymmetry of .//A'4 ' ',observed
in ref. [15] .

In ref. [16] A.B. Zamolodchikov argued perturbatively that YVA P is an integrable
CFT and constructed explicitly some representatives of the higher integrals of
motion. The local arguments of ref. [16] do not distinguish between positive and
negative couplings and concern both ./t/Al ' and .//A - ' .' . For massive . //A'- ' the
integrability leads to factorized scattering of massive excitations . It is for the

. //A'~; ' model the (RSOS),,_ , scattering theory was suggested as the RFST in ref.
[121 . As for .//A"),', the consequences of integrability are not so clear. In any case
the perturbation by 'P(3 .,) in the right-hand side of eq. (1 .12), together with the
higher counterterms, must be integrable . Using the same arguments as in ref. [16],
one can conclude, that field (P(3 . , ) is indeed integrable to the first perturbative
order and has the same set of integrals of motion, as the perturbation by 00-3)
does . The same is true for field TT in action (1 .13). In fact, infinitely many fields
among the conformal descendants of 1)( , . 3) , 00,, ) and identity operator I can be
found, which have the same common integrals of motion . This would mean, that
perturbation by every mixture of these fields is formally integrable . It is not clear
however, o what extent the first-order perturbative arguments are reliable in the
case of non-renormalizable perturbation theory. Anyhow, we suppose that effec-
tive I R field-theory like (1 .12) and (1 .13) makes sense and can at least be used to
produce asymptotic IR expansions, provided the counterterms are settled properly .
Actic.is (1 .12) and (1 .13) definitely match the integrability at the first order. To
preserve the integrability beyond this, special care must be taken about the higher
counterterms .

It seems important to verify the above listed conjectures about .7A(P ' non-per-
turbatively . In the present paper we try to use the TBA approach for this purpose,
starting from the (RSOS)� scattering theories . Since these RFST's are non-diago-
nal, one must apply the higher-level Bethe ansatz technique [171 to derive the
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Bethe ansatz equations . Instead of doing this we simply propose in sect . 2 a system

of TBA integral equations, which seem to be rather suitable . These equations can

be classified as A� _ , type in the ADE classification of ref. [6], since in this case
n - 1 integral equations are coupled exactly as the nodes of A,; _ , Dynkin diagram .
The analyses of the UV and IR limits of the equations proposed support both their
interpretation as the TBA equations for the (RSOS)� scattering theories and their
relevance for the .,//A(, -) , field theory models . However, for the simplest case of
(RSOS),, the direct derivation of the TBA system from the scattering theory
described above is presented at the end of sect . 2.
To get more information, in sect . 3 the simplest example of the (RSOS); related

TBA equations is studied numerically . This results in a set of high-precision
numerical data for the Casimir energy of the tricritical Ising model subject to the
thermal perturbation by operator 'P(,, ;) of dimension 3/5 C //A(- model in the
above notation). We are able to extract numerically the first several coefficients in
the perturbative expansion of the Casimir energy and to compare them with the
results of direct perturbative calculations . This gives in particular a numerical
relation between the coupling A in eq . (1 .11) and the kink mass in . Also the
analyticity of the Casimir energy in A near A = 0 is supported .

Supposing the Casimir energy to be analytic in A, one can try to get some
information about .~~A(� ' from the

	

data by means of analytic continuation.
in the coupling . For the case of . //A

	

this is performed in sect . 4 . Numerical
analytic continuation of the high-precision TBA data results in a reasonable
estimate of the .,,7A(4 ' Casimir energy . The bulk vacuum-energy and the IR
central-charge are evaluated . The data support the Y/A` field theory to be the
flow from the tricritical Ising fixed-point to the critical Ising one [151 . Also we
compa--c the IR behavior with the non-renormalizable perturbations of action
(1 .13). Although the data in the IR region are not reliable enough to perform a
detailed analyses, we are able to verify the relevance of action (1 .13) and to
estimate roughly the relation between the IR coupling g and the UV coupling A .

2 . TBA equations for SOS)� scattering theories

In this section a system of TBA equations is proposed to describe the finite-tem-
perature effects of the (RSOS) � scattering theory. We guess that this system can be
obtained as the result of the higher-level Bethe ansatz, which takes account of the
non-diagonal (RSOS) � kink scattering. Under the conjectures of ref. [12] this
system describes also the Casimir energy E(R) of the .//A4�+, field-theory living on
the space circle (the periodic boundary conditions are implied) of finite length R.
The system is associated with the Dynkin diagram of Lie algebra A � _ , . It involves
n - 1 pseudoenergies Ea(ß ), a = 1, 2, . . ., n - 1 (real functions of rapidity 8), which
are attached to the nodes of the A � - , diagram, as shown in fig . 4. Let 1 � r, ;



Fig. 2 . Pseudo-energieti

	

a = 1, 2. . . . . n - 1, which enter the TBA systern (2.2). are attached to nodes
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of A � _ , diagram .

Provided -J/3) solve system (2.2), the Casimir energy is given by

The circle length R enters the equations only through the "mass term" tin � cash ~.
We choose the "mass spectrum" in the following way

til l =III,

	

tit � = 0

	

for

	

a = 2, 3, . . . , tj - l .

	

(2.5)

E(R) = - F,' ll

	

to
cosh ,8 L �(ß) dß =

-

	

J cosh ,8 L,(ß) d,8 .

	

(2.6)

Note, that eqs . (2.2) look precisely as if they would describe the system of tj - I
different species of physical particles subject to a specially designed penetrable
scattering. However, these particles except for the first one (corresponding to
pseudo-energy E,(,O)) have vanishing energies : in,, cosh 13 = 0 for a = 2,3, . . ., n - 1 .
It means that these pseudo-energies E�(13), a = 2, 3, . . . , n - I correspond not to
physical particles but rather to pseudoparticles, which are usual in the higher-level
Bethe ansatz . Pseudoparticles carry no energy and their role is to arrange a
suitable "color" structure of the Bethe ansatz wave function (17] . This interpreta-
tion will be supported shortly by the explicit calculation for a particular example .

a, b = 1, 2, -. . . , n 1 be the incidence matrix of the A � _ , diagram, and

L,,(ß) = log( 1 + e - F-(13 ) ) . (2.1)

The system reads as follows

1
- til�R cosh ß + -� + F 1�hw X Li, = 0 . (2.2)27r ,_

HvHeri e

~F(ß) = 1 ;cosh (3 . (2.3)

is the common kernel, and the star x denotes the rapidity convolution

x
X Lr = ~(ß -,8') L�(ß') dß'

-x
(2.4)
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Turning now to the analyses of system (2.2) consider first what one could expect
for the low-temperature thermodynamics of the scattering theory (RSOS)� . At low
temperature T = 1 /R we have a dilute gas of far separated and slowly moving
kinks with some vacuum structure in between . The kink interactions can be
neglected completely . Nevertheless we have to allow for the statistics of the
interkink vacua. The interkink vacuum "coloring" is governed by the (RSOS) �
rules, i.e . it follows the A� Dynkin diagram adjacency structure . Obviously, the
corresponding specific (per kink) "color" entropy is determined by the largest
eigenvalue of the A � incidence matrix, which is known to be 2 cos(,, /n + 1) .
Therefore for T - 0 we have

E( R) _ - 2cos

	

jd

	

27,-
cosh ß e -m K cosh

	

dß .
n+1 J 2

OnOn the other hand, for R = oc (T = 0) not all the pseudo-energies -J/3) in eqs .
(2.2) become infinite, as happens in the usual "massive" TBA equations . Pseudo-
energy F,(ß) does, but the "massless" ones become finite rapidity-independent
constants F�(x) . Denoting 3, ,, = exp(-,-�(x)), a = 2,3, . . ., n - 1, we have the fol-
lowing equations for these constants

rr - 1

( 1 +3") i- a=2,3, . . .,/1- 1,

sin(Tra/(n + 1)) -
sin( .r/( n + 1) )

(2 .7)

(2.S)

where

	

a, h =2.3,...,n - 1 is the incidence matrix of the "restricted' A� -,
Dynkin diagram (the A� _, diagram of fig . 2 without the first node). Therefore [2]

(2 .9)

Note, that this expression formally holds also for

	

y , = 0.

	

Substituting these
constants in eqs . (2.2) as a zero-order low-temperature approximation, we find for
the next iteration

F,(ß) = niR cosh ß - '' log(1 +y-,) .

	

(2.10)

Under definition (2.6) this leads precisely to the (RSOS)� low-temperature estima-
tion (2.7) . In principle, the low-temperature iterations can be developed further
and compared with the cluster expansion for the (RSOS) � kink gas . At present we
skip this point .

For R finite the constants £ �(x) still persist as a limiting values of the functions
ßs,(ß) as ß - ± x . On the other hand, as R ---> 0 (high-temperature limit) all the
pseudo-energies tend to finite constants -j0) inside the "central region"



with different solution

asymptotics
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;(15

-log( I /mR) << ß << log( 1 /mR) [ 1-5] . The constants _r,, = exp( -,-,,()) now satisfy
the system

E( R )

a = 1,2, . . .,n - I

r

	

in(,, (a + 11 /(n + 2) )

	

2

	

(2.12)

Performing the standard calculation [ 1-5,11,18,19] we find for the leading R --3- 0

1

	

11 -1

E( R) - -

	

F,

	

~

	

x"

	

)
-
J17 (	y',

	

(2 .13)
.. R ~,

=1

	

1 +x �

	

1 +hu )1 ,

where _(x) is the Rogers dilogarithm function

-_ß(x)

	

-

	

log t

	

log(1 -t)
1dt

+

	

.

	

(2.14)
-t t

With the dilogarithm sum rules [20] eq. (2.13) reduces to

r

	

6

6R

	

1

	

(at + 1)(n +2)
(2 .15)

This asymptotics is to be compared with the Casimir energy . predicted by confor-
mal symmetry [8] for any unitary CFT with central charge c

	

f

E(R)

	

6R *

	

(2.16)

In particular, for YIA � + , one would expect the leading UV behavior (2.16) with

6
c_�	1

	

(n + 1)(n + 2) ,
	(,2.17)

in agreement with the above proposal of .

	

r+, as the background field theory.
Now tern to the bulk vacuum-energy contribution [1,5], proportional to R. In

the case under consideration this term is not the next to leading one in the R - 0
expansion (except for the free-fermion case it = 2). Nevertheless, following the
considerations of ref . [1] one again can express this contribution in terms of the
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quantity L (,kink) (k = i ), where L~k~nk)( k) is the Fourier transform

L`kink)(k) = fL`kink)( O)eik0 dß

	

(2.18)

of the "kink solution" (using the terminology of ref. [11), i .e . the solution to the
following modification of TBA equation (2.2)

(3

	

(kink)

	

1

	

(kink) =-ma R e

	

+ F«

	

+ 27r Elab~P * L t,

	

0 .

	

(2.19)
>>

Considering the analytic properties of the "kink solution" as a function of 6 (see
below) one readily finds that the bulk-energy term vanishes for every odd n .
For n = 3 and n = 5 this vanishing vacuum-energy is in nice agreement with the
unbroken global supersymmetry and fractional supersymmetry, observed in the
(RSOS)3 and (RSOS); scattering theories respectively [12] . We remark here that
zero vacuum-energy implies that the specific heat is a regular function of the
thermal coupling A when it tends to the critical point a - 0 from below A T 0 . Of
course, this does not mean that the specific heat is non-spr, ,,afar at A = 0; in sect. 4
we shall see that there is a singularity as A I G .

For n even, however, the same consideration leads formally to infinite vacuum-
energy . In fact L`;ink)(k) has a pole at k = i. As usual, this infinity signals the
appearance of logarithmic contributions. The logarithm of this kind is well known
in the Casimir energy of the free-fermion system (see e.g . [5]), which corresponds
to n = 2 in the (RSOS), t series . From th-- point of view the nature of this
logarithm is clear. Considering the perturbative expansion of the Casimir energy
(see below) one observes the logarithmic divergence at order (1r + 2)/2, which
gives the contribution

E«"

	

')/2) = A(,7+?)/2R(C, log( R/E) + const .),

	

(2.20)pert

where C, is some numerical (in principle calculable) constant, and E is the UV
cutoff (anybody who does not like infinite cutoffs is free to replace E by an
arbitrary dimensional normalization scale I-0 . Performing the subtraction necessary
to adjust the perturbative UV structure to one predicted by TBA equations (2.2)
(see eq . (2.22) below) one recovers the specific vacuum energy

~�<lC

	

C, log(EA(" +-')/4 ) + const.) .

	

(2.21)

Along with the predictable singular term

	

- R(n + 2)2 C, A" /' log A the vacuum
expectation (0) = (d/dA )~v,, c of the perturbing field 0 = 00 .3) contains indeter-
minate contributions non-singular in A, which depend on the cutoff E (or normal-



ization point t.). This ambiguity can be traced to the (n/2)th order resonance
between the field 0 and the identity operator 1 [21] . The resonance leads to an
indeterminate admixture of operator 1 into the perturbed field 0, which cannot be
fixed unless a normalization point is chosen . Naturally, this ambiguity does not
affect the logarithmic specific-heat singularity (2.21) (note, that the power (n + 2)/2
is integer for n even) .

Froin the TBA point of view the observed logarithm can be treated as a result of
the resonance between the (n + 2);2th regular term in the R --> 0 expansion (see
below for the definition of regukir terms) and the bulk-energy contribution . To
estimate the coefficient before the logarithmic term one must adjust the above
arguments to the resonance situation . For R -> 0 consider the central rapidity
region - log(1 /mR) <<,8 << log(1 /inR ). The functions La(ß) are nearly constant
here, Lc,(ß) = L JO) + corrections . Contrary to the non-resonance case, the term
Qa cosh ß (with some constants Qu) is permitted now among the corrections (see
eq. (2.26) below). It is just this term that leads to logarithmic contribution in the
integral (2.6) . On the other hand a direct calculation fixes Q, = inR/(n + 2) (see
appendix of ref. [27]). Therefore the logarithmic term in the Casimir energy (2.6)
amounts

where C, is some unknown constant . One obtains the following form of the small
R Casimir-energy expansion
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in 2R

	

2
(log(fnR) + G),

27r n + 2

2-rr ~

	

c�

	

2

	

( inR

	

2

E(R ) = -

	

_)

R

	

12

	

fi + 2

	

2T

	

log(inR) + I power terms)

	

(2.22)

We see again that the TBA is able to predict exactly the specific-heat singularity in
terms of the correlation length in -' [1, 5] .
To have more insight into the analytic structure of eqs. (2.2) we proceed as in

ref. [6] . Note, that every solution to eqs . (2.2) satisfies also the functional relation

Yu ( J3+i7r)Yu(P-i7r) _ -1(1 +Yh(ß))1"' ,

	

a= 1,2, . . .,n- i, (2 .23)
h

where functions

Ya(Iß) = exp(-£u(ß))I (2.24)

were introduced . This functional equation has nearly the same form as the similar
one related in ref. [6] to A� _ , penetrable scattering . Eq. (2.23) differs only in
another step value in the left hand side and in that Y,(ß) is now given by eq. (2.24)



.-~1.i3.

	

crsarr~lr~~c°lri~rrr~ ,~

	

~(3y~.~r~r~grür~' t~acyrrr~sg.,

instead of exp~(~ #,( ß )~ ïn ref. [b] .

	

eejertheless` one can apply exactly the same
ar4unaents to conclude that

	

"(ß), ~ = 1, 2, . . . , ~~ - 1 are entire functions in the
°hole

	

plane and satïsf~~ the f~lloti~Jïng periodicity

(note, that contrarr~ to the example of ref. fí] `ve now leave no sy

	

etry }l,(ß ) _

~, _ ~,( ß) in eqs . (2.23 :and therefore the period is t®vice that quoted in ref. [(~]).
here is a regular expansion, con~~ergent everywhere in the

	

-plane

('.26)

For the solution to eqs . (2?) ~; ~ ~ _ ~~; -~ °. 'The "kink solution" is regular also at
ß = ~° ~, i.e . }~a~' -- () for ~; ~ 0. The form (2.2fí) suggests thai for R ~ 0 the
~~asimir energy (2.fí3 can be expa~aded in powers of G = (~rrR)~%~®' }-'' (except for
singie logari~hmïc term (2.223 `at even ~~) . For the scaling function f(G) _
( R/?-) Et R ) ~j=e expect

x

(G ) _ -
ç~

+ ~ F,1~®' + (1oa ~erm ( 2.22 ) for even ji )

	

(2.27)
l_ � -,

(along the lines of ref. [h] one can speculate that F~ = 0 in expansion (2.27)).
p~nsion (2.2ï) is to be compared with the Casimir-energy perturbative expan-

sion [ l , >, 2;], expected in . ~A � + i

`~~here t =

(-lere (

	

( l, 1)ß(_r , , .t a ) . . .

	

( .r� _ , , .~� _ , )~~ is the connected infinite-plane r-point
correlation function of CFT fields ~ _ ~~,, ;, in . .t~� ~ s

	

and ~ = f~/(n + 2) (for
possibi_e logarithmic divergences in integrals (2.29) one must keep in mind the
metric (R/2är)-' d.r dx/~:~ in the .r-plane) . For the purposes of sect . 3 we quote
the first two terms in expansion (2.29), which can be carried out explicitly . Using
the formulas [23]

- ? r® A(R/2 r® )~r° '~ t !' is the dimenaionless effective coupling and

1

	

d-x;

d -'x

	

,ry-'( ~)

( ~) ~

	

~~(1 -k)(1 -x 3J -~

	

y(?j)

	

,

( 2.28)

( 2.29 )

( 2 .301



and

where y(x) = F(x)/r(I -t ), we have
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d-'x d2
`A

	

__ ~'Y'( -1/2)
(xt~3~==)

	

[( 1 - x)(1-x)C1-v)(1-`')(x-y)Cx-!Y(3:1/2)

(2.31)

4 Y(2, )

B; = -
48 2Y (3,/2) .

Here C,,,, is the three-0 structure constant in

1

	

-y7(1 /5)

	

1
/2

B; 72 -y(215)

C,p,,,,, Y' ( , /2)

8Y( 2,J11 )

	

Y(3( 1 - -1)/2)
~-

1,12

000 _ ,(1 _ 3J)Y-2 (j)

	

Y'((1

25
B, =

4Y(115)Y2(2/5)

	

= 0.714401179 . . .

' [231

= -1 .385590503 . . .

5

( 2 .32)

(2.33)

The sign in eq. (2.33) is chosen so that C,,,,4,, is positive . This choice of course is a
matter normalization of the field fi . It is for the choice (2.33) we have the
interpretation described above of the coupling signs in .,//A,, + . In the first
non-trivial example of fA 4 we have.

for

	

..//A 4

	

(2.34)

On the other hand in sect . 3 the TBA eqs. (2.2) are solved numerically for the
simplest case of (RSOS)3 scattering theory. We are able to extract numerically the
first few coefficients F� in expansion (2.27) . Comparison with the numbers (2.34)
supports the connection suggested above between eqs. (2.2) and ,~+ ! field
theories .
To end the section we present here the direct derivation of system (2.2) in the

first non-trivial case n = 3, starting with the (RSOS)3 scattering theory, which was
described explicitly in sect . 1 . Consider a state of N kinks in the periodic box of
length L . L is supposed large as compared to the correlation length Rc = In - ! and
therefore the state can be described in terms of the kink wave function . Since the
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kink scattering is factorized, this wave function is the Bethe one. As usual, the
Bethe wave function is characterized by a set of N real rapidities 81'),82')' . .,)13N9
energy and momentum of the corresponding state being as follows

N
e(,6� . . . 9 PN) =

	

F in cosh Pk ,
k=1

N
P(P1- . , PN) = F in sinh 8k .	(2 .35)

An additional structure is related to non-trivial interkink vacuum "coloring" . To
allow for this introduce the color wave-function 'P'" , --"`~ ; a 1 , . . . , «N E,W�. The
colored Bethe wave-function can be conventionally represented as

a, . . . «\_ E=-.d�

where B", t.(ß) are the non-commuting symbols defined in sect . 1 . Of course, the
number of kinks must be even, N = 2 M, to match the periodicity of the color
wave-function and the (RSOS) � adjacency restrictions . Together with commutation
relations (1 .1) symbol (2.36) unambiguously determines the color structure of the
Bethe wave-function for each space ordering of kinks.

If L = x symbol (2.36) represents an allowed wave-function at every set of real
rapidities 8, . . . . . . ß,.,, . Keeping this set fixed one can consider the space W of color
wave-functions as the space of states of a periodic N-point chain, which is
a standard object in 2D lattice statistical mechanics (see e .g . ref. [24]) . In standard
way one defines the one-parameter family of commuting transfer-matrices T(ct) =
T(et 10 1 , . . . , ßN) (parameterized by spectral parameter it) which act in space W as
follows (fig . 3)

(T(t,)W)<t1 . . .(v\ -

	

L

	

S
cr

Q

~

1

.

.

.

.

.

.

cr

ik

�,

\( �
imi, " . .,ß .V)

	

cr~

I

. . .c"\

ai / a2

1 32

a

cY'3

3

Fig. 3. (RSOS)� transfer-matrix.

a

aN

N

N

(2.36)

(2.37)
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îl l

where the transfer-matrix entries

eim l . tii nh f"

	

(

	

!~

	

~
Bcr~cr=\ B1 ) Bcr,ct 3( 132 ) . . . B<���( JON )

Fig. 4 . Transfer-matrix of (RSOS) 3 scattering-theory . Dashed areas correspond to the vacuum a = t}.
Labeled areas carry a =Q= +.

S cr

	

. . cr

	

/~

	

~

	

cr=cr ;

	

cr~cr ~
cr j . . . cr

	

(1l I 8 1 ,* . . ', NN )

	

Scr cr;( il -

	

1 )Scr,cr',( il -j82)

	

í (il

	

(2.38)

are combinations of the (RSOS)� scattering amplitudes (1 .1). The factorization of
the kink scattering ensures the commutativity of the whole family TOO., which
therefore can be diagonalized simultaneously . The problem of finding the common
eigenvectors W, E W, 1= 1, 2, . . ., dim W (which are independent of it) and the
corresponding eigenvalues 1A,(u hP l, . . . , 13N)

T( ii1131, . . .,ON)

	

V- . 'J il~l.'1, . . .,~3 .ti

	

(2.39)

is a usual problem of integrable lattice-statistical-mechanics [24) . In fact, the
transfer-matrix (2.37) is essentially an inhomogeneous version of the integrable
RSOS model IRF transfer-matrix [11] . In the particular case ü = 3 we mainly
consider below it has a "staggered" structure described in fig . 4 and is (up to an
overall factor) nothing but an inhomogeneous diagonal transfer-matrix of the
critical Ising model.

Unlike the infinite-volume Bethe wave-function, in a finite box the set of
rapidities (3 1 , . . . , JON is not arbitrary . It is restricted by the Bethe ansatz equations,
which take account of the periodic boundary conditions . These can be settled
formally by restricting the associative algebra of symbols B,,..(,8) by the following
cycle permutation relation

Bc�r,( P2 ) . . . Bcr S cr~( F` .ti' ) Bcr I cr=( F31 )

(2.40)

I t is straightforward to observe that the consistency of this additional restriction
with the commutation relations 0 .0 selects in the space of states (2.36) the states,
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which satisfy Yang equations [ 17]

einil. s inhl3 k
_1(ßk1ßl- . . )PN)

	

1

	

k = 1,2, . . ., N, (2 .41)

i.e . which are eigenvectors of the color transfer-matrix, the set

	

ßN satisfying

the system (2.41) .
To write down eqs. (2.41) explicitly we have to find the eigenvalues of the

transfer-matrix TOA) . At this point we turn to the simplest example, 11 = 3, where

the last problem coincides with the eigenvalue problem for the diagonal Ising

transfer-inatrix . The steps below are simply taken from ref. [24) with a minor

modification allowing for the inhomogeneity of the chain .

Taking the explicit expression (1 .7) for the (RSOS)3 scattering amplitudes we

first factor out the common multiplier

Al N

2~~(ctlßl, . . .,PN) =exp -ip F (N2i-1 - Pli)

	

11 Q(lt -ßk),
i-1

	

- k=1

and define the reduced transfer-matrix t(ct 1(3 1 , . . . , ßN) by

T(lllßl, . . .,ßN)- (11Iß1, . . .,ON)t(111,81, . . .,ON)~

Then, the entries of the reduced transfer-matrix

t (rj . . . crir (1t Iß I

	

. . . , ß~1i ) = g,rlr,r!(ll
-
ß 1) firi~r~( 11 - P2) X 91r;a_( lt - ß 3) fir;<r,( ll - 184)

. . . g(rjl

	

I~r.1r` lt - ßN- I)f~rir~rtir( lt - ßN )

(2 .42)

(2.43)

(2 .44)

are entire 4i7-,-periodic functions of the spectral parameter it . Considering the
explicit form (1 .10) of the functions f,r,rAß) and g,r, r .(ß) one finds that as et --j x

along the real axis every matrix element of t(u) grows as exp(Mct/2) (or slower).
The reduced eigenvalues A(ctjPj_ . ., AN) = `-'(lllßl, . . .,AN).~~(111ß1, . . .,AN) ex-
hibit the same analytic properties (as functions of the spectral parameter). More-
over, due to obvious invariance of amplitudes (1 .10) under the simultaneous
reversion of both spins (we use here the Ising model terms and refer to variables 0-

as the spins), every eigenstate has a definite parity r = ± under the simultaneous
reversion of all the spins in the state . The corresponding operation in W is denoted
as R. It is easy to cheek that

t(it+27ri) =(-)"'Rt(u),

	

(2.45)

and therefore an eigenvalue of parity r satisfies

A(it + 217r1/31,"* , ßN) = ( )'1'rA(ltjPI,"'+ßN)' (2 .46)
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This means that the it-dependence of every eigenvalue A is as follows

A(u) =A

A(u) =A

where A is some ii-independent constant and xi , i = 1, 2, . . ., M (or M - 1) are
complex numbers (eigenvalue zeroes), which always can be put inside the strip
- 7r < Im xi <7. Their positions depend on the eigenstate and also on the set of
rapidities ß,, . . . , ßN .

Next, exploiting the factorization and unitarity (1 .5), (1 .6) of the kink scattering-
amplitudes, one readily recovers the following "inversion relation" [24]

t (tt) t(tt + i7r) = 1-1 cosh

	

+R

	

sinh

	

(2.48)
- 1 2 k=, 2

Mk

	

fik

which results in the functional equation for the entire eigenvalue functions A(tt)

A(u) h(u + i7r) = fl cosh

	

+ r- FJ sinh

	

(2.49)
k=1 2 k-l 2

where r is the parity of the state we are considering . Taking the representation
(2.47) one concludes that M eigenvalue zeroes xi (M - I in the odd case) can be
found among N = 2M (respectively N - 2) zeroes of the right-hand side of eq.
(2.49) . The last form in the strip -7r < Im xi < ,T a set of complex-conjugate pairs
x; ' = yi ± '-,i7 (fig . 5) (we remind that all the rapidities -ßk are supposed real),
where the set of numbers yi , i = 1, 2, . . .,M (M - 1 in the odd case) includes all

ßk

	

fik
N

-
.ti

-Lt

	

tir

O _ir O

	

O

Rex
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Fig. 5 . Zeroes of the r .h .s . of eq . (2.49) are examplified as circles . Full circles are actual zeroes of a
particular eigenvalue .

u - xisinh for R-even states,
=1 2
M-1 11-x

'sinh for R-odd states, (2.47)
i=1 2
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the finite real solutions to the following equation

Yang equation (2.4-1)

Here

sinh

sinh (
l

i`
- ßk

4

4

r (2.50)

One can pick one zero from each pair to collect the set of zeroes necessary for the
eigenvalue function . In the odd case there are exactly 2"f- ' possible choices,
corresponding to 2'"' odd eigenstates . In the even case there is in fact one
additional restriction on the choice of actual eigenvalue zeroes, which reduces the
number of allowed distributions from 2"' to 2 -" - ' [24] . We shall not discuss here
this subtlety because it obviously has no thermodynamic consequences. Note, that
once the set ß,, . . . , ON is chosen the positions of the zeroes we have to pick out
from are prescribed by eq. (2.50) and do not depend on the actual eigenstate .
Surely this simplification is a reflection of the free-fermion nature of the Ising-
model space of states and is not expected to persist for systems with interacting
excitations .
Turn now to the thermodynamic limit N

	

x, which corresponds to L

	

oc . As
it is usual in TBA [7], one introduces the rapidity density of kink states p(ß) and
the actual density of kinks p,(,B) . For the density of kinks fixed introduce also the
densities P ,(y) of eigenvalue zeroes located respectively at x = y ± '-, i 7r . The joint
density P(y) = P+(y) + P_(y) is obviously the density of solutions to eq. (2.50) .
Differentiating the last equation with respect to y one finds in the thermodynamic
limit

f

	

p i(ß) dß

	

(2.51)2r,P(y)=
J cosh( y - j6)

Another relation, which determines the density of kink states, follows from the

1 P (

	

P_(Y)2 ~~ p(ß) = mL cosh 13 +

	

cp,T( ß - ß) p ~( ß)
dß? + ^

	

+

	

y 1

	

(y )1

	

21

	

dy .
cosh( j9 -y)

comes from eq. (1 .9). In the derivation of eq. (2.52) only the phases of the

(2.52)

1 e 'k ƒ3
~~P,T(P) = -- _ -

dß
Imlogo,(ß) 4 J cosh - ( Trk/2)

dk, (2 .53)
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scattering amplitudes are taken into account . Due to relation (2.51) the contribu-
tions of the corresponding absolute values cancel out completely. Together with
(2.51) eq. (2.52) gives the following set

P+(y) dy2rp(ß) = mL cosh ß + f
cosh( ß

-
y )

,

_

	

pj(ß) dl3
2~P( )') - f cosh( y - ß)

The zeroes distribution entropy and the rapidity distribution entropy are

.Z1ero« = f d y(P log P - P+ log P+ - P loge-),

(2.54)

'~19kink - f d y(p log p - p, log p, - (p - p,) log( P - pl » .

	

(2.55)

Introduce pseudo-energies -, and -, as

pi

	

e-F '

	

P+	e -F_

p

	

1 + e- F , '

	

P

	

1 + e-' :!

With the total energy of the kink system m f cosh /3 p,(13) d .8 and restrictions (2.54)
the thermodynamic eqa _' °'-)rium at temperature T= 11R leads precisely to the
TBA equations (2.2) (for , : ---- 3) and the Casimir energy as in eq . (2.6) .

3. Numerical results for the (RSOS)3 system

(2.56)

For n = 3 eqs . (2.2) form a system of two coupled integral equations. This system
was solved numerically by an iterative procedure . The scaling function

mR
f(R) _ -

	

2

	

, fcosh P log(1 + e - '1(16» dß ,	(3 .1)
j7r

is presented in table 1 up to 15 decimal digits accuracy. In fig . 6 f(R) is plotted
against the dimensionless parameter

G = (mR) 4/' .

	

(3.2)

For G close to zero the curve appears as a regular function at G = 0 with the
G-expansion starting with - 120 + F,G-2 + . . . and without any vacuum-energy
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TAHIT 1
Casimir energy scaling-function for .//A'4 ' field theory

MR f (MR) MR 'E (MR)
6.50 -3 .62942701038764E-4 1.20 -3 .36671739751558E-2
6.40 -3 .98300299046595E-4 1.10 -3 .58920181164612E-2
6 .30 -4 .37056009241474E-4 1.00 -3 .81826520224492E-2
6 .20 -4 .79530117936897E-4 0.98 -3 .86475403001348E-2
6 .10 -5 .26072204564086E-4 0 .96 -3 .91144024943628E-2
6 .00 -5 .77063686093473E-4 0 .94 -3 .95831062194533E-2
5.90 -6 .32920560792635E-4 0 .92 -4 .00535124404785E-2
5.80 -6 .94096363151517E-4 0 .90 -4 .05254752073521E-2
5 .70 -7 .61085341761691E-4 0.88 -4 .09988413735313E-2
5 .60 -8 .34425871697840E-4 0.86 -4 .14734502978640E-2
5 .50 -9 .14704112467607E-4 0 .84 -4 .19491335279299E-2
5.40 -1 .00255792181231E-3 0 .82 -4 .24257144630172E-2
5.30 -1 .09868103448672E-3 0 .80 -4 .29030079946316E-2
5 .20 -1 .20382751353986E-3 0 .78 -4 .33808201221578E-2
5 .10 -1 .31881647946475E-3 0 .76 -4 .38589475409694E-2
5 .00 -1 .4445371'1977143E-3 0.74 -4 .43371771999053E-2
4 .90 -1 .58195397793332E-3 0.72 -4 .48152858245923E-2
4 .80 -1 .73211251611120E-3 0 .70 -4 .52930394025762E-2
4 .70 -1 .89614494039516E-3 0 .68 -4 .57701926256177E-2
4 .60 -2 .07527627032334E-3 0 .66 -4 .62464882837880E-2
4 .50 -2 .27083062590429E-3 0 .64 -4 .67216566051482E-2
4 .40 -2 .48423769502835E-3 0 .62 -4 .71954145337726E-2
4 .30 -2 .71703933170496E-3 0.60 -4 .76674649376542E-2
4 .20 -2 .97089622067840E-3 0.58 -4 .81374957365485E-2
4 .10 -3 .24759452628650E-3 0 .56 -4 .86051789380188E-2
4.00 -3 .54905242253358E-3 0 .54 -4 .907016956774591 :-2
3 .90 -3 .87732637681318E-3 0 .52 -4 .95321044774681E-2
3 .80 -4 .23461703107225E-3 0 .50 -4 .99906010105646E-2
3 .70 -4 .62327449096729E-3 0 .48 -5 .04452555011151E-2
3 .60 -5 .04580279522181E-3 0.46 -5 .08956415769991E-2
3 .50 -5 .50486329345500E-3 0.44 -5 .13413082309066E-2
3 .40 -6 .00327661073273E-3 0.42 -5 .17817776145402E-2
3 .30 -6 .54402282056297E-3 0 .40 -5 .22165425001566E-2
3 .20 -7 .13023938465809E-3 0 .38 -5 .26450633389918E-2
3 .10 -7 .76521634726961E-3 0 .36 -5 .30667648267240E-2
3 .00 -8 .45238819416373E-3 0 .34 -5 .34810318600376E-2
2 .90 -9 .19532170143022E-3 0 .32 -5 .38872047326924E-2
2 .80 -9 .99769900759752E-3 0 .30 -5 .42845733699835E-2
2 .70 -1 .08632950444859E-2 0 .28 -5 .46723703303926E-2
2 .60 -1 .1795948358^023E-2 0 .26 -5 .50497622020086E-2
2 .50 -1 .27995242465434E-2 0 .24 -5 .54158388716128E-2
2 .40 -1 .38778690157088E-2 0.22 -5 .57695999170663E-2
2 .30 -1 .50347540662238E-2 0.20 -5 .61099370179049E-2
2 .20 -1 .62738083712166E-2 0 .18 -5 .64356107022112E-2
2 .10 -1 .75984378088776E-2 0 .16 -5 .67452187727388E-2
2 .00 -1 .90117296668970E-2 0 .14 -5 .70371520230755E-2
1 .90 -2 .05163404894845E-2 0 .12 -5 .73095295855773E-2
1 .80 -2 .21143652539727E-2 0 .10 -5 .75600995990835E-2
1 .70 -2 .38071856221290E-2 0 .08 -5 .77860759534626E-2
1 .60 -2 .55952946683956E-2 0 .06 -5 .79838436315460E-2
1 .50 -2 .74780949754398E-2 0 .04 -5 .81483464702709E-2
1 .40 -2 .94536661984790E-2 0 .02 -5 .82714627978236E-2
1 .30 -3 .15184969609686E-2 0 .00 -5 .8333333 3333333E-2
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Fig. 6. Casimir-energy scalingfunction vs . G = (tnR)"' ~ .
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term, which would behave in this example as G5i-' . More careful analyses of the
data in the interval 0 < G < 0.5 reliably shows that this analytic structure is indeed
the case and permits to recover numerically the first several coefficients F,r in
expansion (2.27) . The numbers are quoted in table 2 . Comparing the first coeffi-
cient F, with the corresponding term in pertutbative expansion (2.34) we are able
to find the following numerical relation between the -IWA(4 ' coupling constant A
and the kink mass to

A = ( - 0.310148596 . . . ) f1i-1, '5 .

	

(3.3)

With this number in hand one can transform the rest of the coefficients of table 2

TABI-r 2
The first several coefficients F� in expansion (2.27)

tt F�

2 3.2946543241(1) x 1()-2

3 - 1 .372260104(1) x 1()-2
4 3.681163(1) x 1()-4

5 5.11M)x 10- ;
6 8.420) x 10 - ;
7 -2.380) x 10
8 -1 .3(1)x 10 -5
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to perturbative ones B� [eq . (2.28)] . In particular. the value of F; gives

(the digit in brackets here and below is the uncertainty in the last digit quoted) in
agreement with the direct perturbative result of eq. (2.34) .

Suppose the analytic behavior of the scaling function F(G) observed numerically
in the previous section is correct . Then it is natural to use the high precision data
at G > 0 for analytic continuation into the negative G region. Under the connec-
tion observed in sect . 2 between the G-expansion and the perturbative series in
coupling constant A, we expect this negative G region to describe the Casimir
energy of the positive coupling field theory . .//A~ .~ ' .
The rational extrapolation technique was used . Based upon

	

N = 18, . . . , 26
positive G data points inside the interval 0 < G < 0.5 the N-point Thielc fraction
[25] was constructed, which represents the diagonal [ N/2, N/2] N-p6 >>t Padé
approximant . For actual extrapolation we used the fractions with N = 22 or 24,
which give the most stable numbers in the interval -4 < G < 0. The resvit is
plotted in fig . 7 together with few points representing the "exact" TBA data for
G > 0 .
The most interesting thing to explore is the hrsiiav or of the extrapolation data as

G - -x. Since we believe them to estimate the Casimir-energy scaling-function of
.í/A(4̀ ), this limit corresponds to the IR region, where the dimensionless circle
length

becomes large. The leading term one would expect here is the bulk vacuum-energy .
In the scaling function it appears as a rise with r as r - =(-G)5/-' and is definitely
non-z,-ro, as one can observe in fig. 7 . The supersymmetry of the action ( l . 11) for
1i = 4 is broken spontaneously at A > 0 and therefore it is realized non-linearly . In
fig, 8 the function f(1. )/1. -' is plotted against I /r -' . Apart from a small region of
1/1.2 < 0.015 close to the origin, where the curve goes up fast (we attribute this
effect to a fault with the rational extrapolation at -G large) the data are well
fitted by the straight line

where

-1 .38559050(l),

	

(3.4)

4. From tricritical Ising to critical Ising by analytic continuation

r =( -G) 5 /4

	

(4.1)

.i(r) = A,-2 +C,

A =0 .03980(1),

	

B= -0.042(1) .

	

(4.3)
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t

Fig . 7. Padé extrapolation from l) 5 G < () .5 . Solid curve - extrapolation data . _ - "exact" TBA points
at G > (). Dashed curve - bulk vacuum-energy ().()398()( -G)s = .

The first number corresponds to the bulk vacuum-energy in ..//A~,~

K, Ic = 27, m-'A .

	

(4.4)

It is interesting to note, that numerically A coincides (within the accuracy quoted
in (4.3)) with 1/87r . The second number B is in agreement with -1 /24 (this is
-c/12 at c = 1/2), i.e . what one would expect in the IR region of the trajectory
flowing to the critical Ising fixed point .

Unfortunately, in the infrared region r -~ oc the extrapolation data (see table 3
and fig . 9) are not precise enough to say something definite about the next IR
corrections . These corrections are closely related to the scalar irrelevant-operator,
which attracts the trajectory to the IR fixed-point . In the case under consideration
the guess of operator TT - :_OdO : (where 0, ~ are the Ising massless free-ferm-
ion fields), as in eq . (1 .13), seems most natural [151. First, it has the lowest
dimension among the irrelevant operators permitted by symmetry arguments .
Second, one can readily repeat the dimension-counting arguments of ref. [161 to
convince oneself that the operator TT is integrable to first perturbative order (this
holds not only for the critical Ising model, but in fact for every CFT). However, in
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j»(, .)l1 .2 against 1 /l.-' ; r = ( - (: )5/a .

the case of irrelevant perturbation the first-order check does not prove the
integrability, unlike the reievant case, where the first-order perturbation (or at
least finitely many perturbative terms) typically completely determines the struc-
ture of higher integrals of motion [16] . D oensional counting allows in fact an
infinite number of heher-dimension CF" i :pc:ators to appear in any conservation
low beyond the first TT perturbation . Nevertheless we expect, that the higher-
dimension counterterms in the action (1 .13) aö ._ .,ays can be picked so as to provide
a real integrability.

TABU-. 3
Function U(G) = Í'(G) - () .()398(- G ) 5,1 . ' is tabulated vs G

G U(G) G U(G)

-3.0 -4.398E-2 - 1 .0 - 5.15010E-2
-2.8 -4.433E-2 _0.9 - 5.22282E-2
-2.6 -4.473E-2 -11 .8 - 5.29904E-2
-2.4 -4.5190E-2 -0.7 - 5.37815E-2
-2.2 -4.5730E-2 -0.6 - 5.45918E-2
-2.0 -4.6364E-2 -0.5 - 5.54068E-2
-1 .8 -4.7107E-2 -0.4 - 5.62055E-2
-1.6 -ó.7978E-2 -0.3 - 5.69573E-2
-1.4 - 4.89924E-2 -0.2 - 5.76170E-2
-1 .2 - 5.01650E-2 -OA - 5.81159E-2

0.0 -- 5.83333E-2
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Starting from the action (1 .13) one can develop formally the following IR
perturbative expansion of the Casimir-energy scaling-function
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Fig . 9 . Extrapolation data without vacuum energy contribution . i .e . f(r)-0.03980r-' (solid curve) .
Dashed line corresponds to expected infrared limit - 1/24 .

( - a/2rr)
2Tr L

	

f 1( %(i)T(z,) . . .T(z,r»
c

1'
1-1

1zi1 2 d2zl

	

(4.5)
12 n-1 11 1 1

	

i=2

where a = (2Tr)3g/R' and (7(z,) . . . T(z� ))c is the connectel infinite-plane corre-
lation function of n operators -r(z) = T(z) - (c/24z -' )I. Here and in eq . (4.5) c is
the central charge in the infrared CFT (c = 1/2 in the actual case). The first two
terms read explicitly

f( R) _ -Ç +
(
Ç

)2

a - ( c-) a + O(a 3 )

	

(4.6)
12 24 24

The one-loop integral contributing at order a` develops UV-divergences of orders
g
2
/E 6 and g

2
/E 2 (where E is the UV cutoff length), which can be attributed

respectively to a cutoff-dependent shift in the bulk vacuum-energy and to a
perturbative renormalization (diffeomorphism) of the coupling g

g-

gK =g + cons .. . ; + . . . ,

	

(4.7)
E-
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where g R is the renormalized coupling constant . The next term of order a3 in
expansion (4.6) is ambiguous since at this order the first possible counterterm
(TT )-' in the r.h.s. of eq . (1 .13) becomes to contribute with an undetermined
coupling constant .

Nevertheless the terms present in eq . (4.6) predict the following asymptotic
expansion

from which the relation follows

ƒ(r) = A1.2+C+
C,
; +

C
~
,
+

C,,
3 + . . . ,

	

(4.8)
1.
`	l'

	

1*

where the bulk vacuum energy A is not determined direcily by the perturbation
theory of the action (1 .13), C = -1/24 and-

Q is the following R-independent combination

C, = Q/48-' ,	C,=Q2/48- .

	

(4.9)

Q = ai-" = (4630 .36318 . . . )gA' /-'

	

(4.10)

(the numerical result (3.3) was used to compute the number in the r.h .s .), which
depends on the relation between UV and IR coupling constants of ./,/A' 4' ).
As a result of a somewhat more careful analyses of the extrapolation data

(including the analyses of a small deviation from the linear dependence in fig . 8)
we obtained the following numerical estimation of the next term i .1 expansion (4.8)

C,=-0.04±0 .01,

	

(4.11)

z?={ -2 .0±0 .5)A-5/-' .

	

(4.12)

Unfortunately the precision her: is not enaûgh even to be sure that this correction
follows exactly the behavior (4.8) . Also we are not able to extract the next term of
order a`, not to talk about the a' correction, which would provide information
about the first counterterm in the effective action (1 .13) .

5 . Conclusions

We presented some analytic and numerical evidences supporting both the
interpretation of the (RSOS) � scattering theories as the on-mass-shell data of
,//A(,-,+ , field theory models and the system (2.2) as the corresponding system of
TBA equations .
The numerical analytic continuation of TBA data, corresponding to //A(,-

model, is in agreement with the interpretation of .//,/A( 4+) as the RG trajectory
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flowing from the tricritical Ising fixed-point to the critical Ising one. Also they are
in support, though much less certain, of (1 .3) as an effective IR action of
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I am grateful to V.A. Fateev for stimulating discussions .

Notes added

Note added in proof

References

523

(i) After the paper was finished, I received the preprint by Itoyama and

	

oxhay
[26], where the TBA system (2.2) is suggested, although with a much different
interpretation .

(ü) It turns possible to describe the Casimir energy in

	

field theories
directly by a kind of massless TBA system, modifying slightly system (2.2) [27] .

T. Klassen and E. Melzer pointed out to me that the number quoted in eq . (3.3)
is accidentally off by a factor of (2T,- )-/5. The correct relation is A =
(-0.148695516 . . . ) nt4i5. The other numbers quoted in the paper are unchanged. I
would like to thank T. Klassen and E. Melzer for this and many other relevant
remarks .
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