数学 IB 2006 後期追試験 植野義明

- 筆記用具以外持込不可
- すべての解答に途中経過を書くこと。
- 1 (1) 収束する数列 $\{a_n\}$ は有界であることを示せ。
 - (2) $\lim_{x\to 0} \frac{\log(\cos 3x)}{\log(\cos 2x)}$ を求めよ。
- $\boxed{2}$ (1) $\sum_{n=1}^{\infty} rac{n^n}{n!}$ は収束するか。
 - (2) $\sum_{n=1}^{\infty} (\sqrt[n]{n}-1)^n$ は収束するか。
- $\boxed{3} \ f(x) = x \sin rac{1}{x}, f(0) = 0$ は x=0 で連続だが、微分可能でないことを示せ。
- $\boxed{4} \ S_n = \sum_{k=0}^{n-1} f(x_k)(x_{k+1} x_k)$ において、 $f(x) = x^{\alpha}, x_k = q^k \ (k=0,1,\dots,n)$ とおく。ただし、 $\alpha \neq -1, q = \sqrt[n]{b}$ である。
 - (1) S_n を q, n, α の式で表せ。
 - (2) $\lim_{n \to \infty} S_n$ を b, α の式で表せ。
- $\boxed{5}$ $f_n(x) = (n+1)x^n(1-x), x \in A = [0,1], n = 1,2,3,\dots$ のとき
 - (1) $\lim_{n\to\infty} f_n(x)$ を求めよ。
 - (2) 収束は一様か。
- $\boxed{6}$ $f(x)=\arctan x$ の x=0 における Taylor 級数を $\sum_{n=0}^{\infty}a_nx^{2n+1}$ とする。
 - (1) a_n を求めよ。 $(n=0,1,\dots)$
 - (2) 収束半径 ρ を求めよ。
- $7 f(x,y) = x^3 + 6xy + y^3$ උස<
 - (1) f(x,y) の停留点を求めよ。
 - (2) 各停留点において、f(x,y) の極大・極小を判定せよ。
- 8 (1) $x=r\cos\theta, y=r\sin\theta$ のとき、 $\frac{\partial(x,y)}{\partial(r,\theta)}$ を求めよ。
 - (2) $D=\{(x,y);\, 4\geq x^2+y^2\geq 1,\, x,y\geq 0\}$ のとき、 $\iint_D xy\,dx\,dy$ を計算せよ。