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Introduction (1)

Porous medium equation (PME)

Oi — Au"", m>1
Ot
Example: Diffusion coefficient depending on
the power of u
Percolation in porous medium,

iIntensive thermal wave, ...
Slow diffusion (anomalous diffusion):
Finite propagation speed
m=1 (normal diffusion): Infinite propagation speed
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Solution of the PME for 1D case
(initial function with bounded support)
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Introduction (2)

Nonlinear Fokker-Planck equation (NFPE)

§
—(f —V.(Bxp+DVp"), B>0
-

Corresponding physical phenomena=>» Slow
diffusion + drift force (by quadratic potential)

equilibrium density exists

Nonlinear transformation between the PME
and the NFPE



Previous work

[Aronson], [Vazquez], [Toscani] and many
others...

Existence, unigueness & mass conservation
W.l.0.g. we consider probability densities

Special solution: self-similar solution
Convergence rate to the self-similar solution
Lyapunov functional (free energy) technique



Introduction (3)

The purpose of the presentation:

= Behavioral analysis of the PME type diffusion
eq. focusing on a stable invariant manifold

the family of g-Gaussian densities
= A new point of view

= Technique and concepts from Information
Geometry can be applied




Outline

1.Generalized entropy and exponential family
2.Information geometry on the g-Gaussian
family and analytical tools
3.Behavioral analysis of the PME and NFPE
Invariant manifold
The second moments, m-projection, geodesic
Peculiar phenomena to slow diffusion
Convergence rate to the g-Gaussian family



1. Generalized entropy and
exp family (1) Naudts 02 & 04], [Eguchiod]

¢(s) :strictly increasing and positive on (0, «)
generalized logarithmic function

it
l
1¢r):=f—d, t> 0.
0= ] e

- Strictly inc.
- Concave
- |ﬂ¢(1) — 0

generalized exponential function

exp, : the inverse of In(r)
convex function Fy(s) for s > 0

to define entropy

Fy(s) = f Ingtdt, F4(0) < 400 :assumed. |
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Generalized entropy and
exp family (2)

Bregman divergence
Delplla] = [ Folp(x)) = Fola(x)) = s a(x)(p(x) - a(a))dp,
Generalized entropy

Lylpl = f —Fy(p(x)) + (1 = p(x0)Fy(0)dx

Generalized exponential model |
My = {po(x) = expy (¢ h(x0)—ky(0))l6 € @ < R} € L'(R")
g : canonical paramtr., K4(€): normalizing const
h(x): vector of stochastic variables (Hamiltonian)
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Remark [naudts 02, 04]

Requirements to the generalized entropy:

1. For a certain’X’, the entropy should be of
the form:

/plnx(l/p)dx

2. expg-family achieves an ME for Z|[p]
- ‘ Then Z,[p] in the previous slide is determined.

Iny IS called the deduced log func of In¢



Another representation of Dy| pllq]

= Conjugate function of F,

Up(1) 1= texpyt — Fy(expy 7).

= U-divergence [Eguchi 04]

Dalplg] = [ Uaingg) = Usling p) = pling g ~ Ing pi




Example (1) (to be used later)

Generalized log = g-logarithm q: real

Ingr = (77-1)/(1-q),

Generalized exp =» g-exponential

[1+(1—¢q)])/"?

exp,, !

o) = ul,q > 0,q # 1 <m=p PME
Generalized entropy

2-q _
1191 = 5— ([ 2L

(2-q)-Tsallis entropy — ’




Example (2) (to be used later)

Bregman divergence

2— 2— - -
Dlpllg] = f qey p(x) — pn I i {;(’“) i
Gen. exp famlly = g-Gaussian family

M:={f(x,0.0)]§cR". 0> 06 =" e R
6" h(x)
gq-Gaussian , _ T T
density f(x:0,0) = s‘:qu (9 X+ X Qx — k(6, @))) ,
9= (0)eR",0 = () e R,

= When q goes to 1, all of them recover to the
standard ones. 13



2. Information geometry [amari,Nagaoka0o]
on g-Gaussian family M

M -finite dimensional manifold in L' (R")
Potential function on M

qub(Q) = fUcf)(ln(b pQ) + (1 — pH)FGb(O)dX + K@(Q)

Uy(f) :Legendre transform of F4(s)

Legendre structure on M compatible with
statistical physics

Riemannian metric, covariant derivatives,
geodesics and so on.
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Important tools from IG (1)

1. dual coordinates (Expectation parameters)
ni(0) 1= 0;¥4(0) = f hi(x)pe(x)du = Ep, [hi(x)],

= Expectation of each /;(x)
(= the 15t and 2" moments for g-Gaussian)

2. m-geodesic
= a curve on M represented as a straight line
In the 17-coordinates

M



Important tools from IG (2)

=
= 3. m-projection of p(x)

pg := arg miny.e pq DIp||po]

LY(R™)
Dlp||pg] — min

p(x)

-projection
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Useful properties of the m-projection

Proposition 2 Let pg € My be the m-projection of p. Then
the following properties hold.:

1) The expectation of h(x) is conserved Dy the m-projection,
e, E,[h(x)] = Ep, [(x)],

i) The following triangular equality holds: Dy[p|lps] =
Z)gb[PHﬁH] + Dyl pollpel for all py € qu-

Rem: The property 1) claims that the 1st and
2"d moments are conserved.
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3. Behavioral analysis of PME and NFPE

SPME: O\ m o
Ot
= NFPE:  dp

— =V -Bxp+DVp™), B>0
ot

= Relation between u and p [Vazquez 03]
p(z,7) = (t+1D)(x.t), z:=(@+1)"Re, 7:=In(t+1)

D = RR!

1

P=m—D+2 7%




Key preliminary result

—
Assumption: 1<m=2-gq<2

Proposition

The g-Gaussian family M is a stable invariant
manifold of the PME and NFPE.

ldea of the proof)

Show the R.H.S. of the PME Au" is tangent
to M when/ ison M.,
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Trajectories of m-projections (PME)

The 1st and 2" moments of u(t)
7 = (") and H™YM = (77Y)
where

U?M(f) = Eu[xi] = fxiu(xa Z)dxa UFM(I) .= Eu[xij]°

Thm

The m-projection of the solution to the PME
evolves following an m-geodesic curve, I.e.,
Its expectation coordinate Is a straight line.
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Properties of the m-projection and
behavioral analysis

Eu(x,O)

m-geodesic




ldea of the proof

e
=~ Time derivatives of the moments:

l

7 (0).
H™(0) + o, M(0)1.

t
oM@ = 2 f dr f u(x, )" dx.
0

straight line in the 77-coordinates

n M (1)
H™(@)
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Implication of the theorem (1)

The theorem implies the existence of
nontrivial N-1 constants of motions. N=dim M

Iy = fu(x,t)dx, ],-:fx,-u(x,t)dx, i=1,---,n,

lij = fxa-xju(x,t)dx, i=1-n j=1,n1%]

n

Ly = Ze?k)(fx?u(x,t)dx—n,-,-(O)), k=1,---,n—1,

i=1

A solution to the PME on the invariant
manifold M Is possibly solvable by
guadratures.
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Implication of the theorem (2)

e
Corollary: Let u1(z,t) and us(x,t) € M be
solutions of the PME.

If 41(x,t0) = ua(z,tp)att = 1, then
HTM(t0)—HEM (1) = 2m(m—1)Dlus (z, to) [luz(z, to)]1
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Implication of the theorem (3)

|dea of the proof

The formula of the 2" moments + the property
1) of the m-projection

The corollary shows that the evolutional
speed of each solution depends on the
Bregman divergence from M .

(=the difference of the entropies)

When m=1 (normal diffusion), such a
phenomenon does not occur.
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Difference of the second moments
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Difference of the evolutional speed
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Convergence analysis for the NFPE
and its application to the PME

Generalized free energy

Flp] = 2[; "D xp(x)dx — I[p]

It works as a Lyapunov functional for the NFPE:

d : I |
GVICTR0) PIBR™ x+(2~q)p™ RV pl*dx < 0.
dr 2—q

The equilibrium density Is a g-Gaussian:

Peo(¥) = £(x;0,00) = exp, (x Oox — k(0, O)),

0, =0, 0OL= —ED_' 2
2m



Convergence analysis for the NFPE
and its application to the PME

Difference of the free energy from the
equilibrium density:
DIpllpe] = W(0,04) - I[p] - O - Ep[xxT]
= Flpl =7 Pl

Thus, D[p(x, 7)||pec(z)] IS monotone
decreasing.

=) |nterpreted as a generalized H-theorem
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Convergence analysis for the NFPE
and its application to the PME

———
= 1. The property ii) of the m-projection:
Dlp(z, 7)||poc(2)]
= Dlp(z, )|[p(z, 7)] + Dp(z, 7)||[poc ()]




Convergence analysis for the NFPE
and its application to the PME

2. The known convergence result [Toscani05]
Dip(x.7)||pso(x)] = Flp(2,7)] — Flpao(2)] < Dlp(,0)|pac (z)]e .

3. The property of the transformation between
the PME and the NFPE

If 4 is a transform of 5, then

— U is an m-projection of u

4==) ;) is an m-projection of p

det(R) [a’f[r. t)" —u(x, t)"dr = (1 + ¢)el—m) /jf:r(r. )" — plx, 7)"dx



Convergence analysis for the NFPE
and its application to the PME

Using 1, 2 and 3, we have the following:

Proposition S Let u(x.t) be a solution of the PME and
i(x,t) be the m-projection of u(x, t) to the g-Gaussian fam-
ily M at each t. Then u(x,t) asymptotically approaches to

M with _
Co
1 +¢

Dlu(x, H)|i(x, )] <

¥

Convergence rate to the g-Gaussian family

L1-norm convergence rate is derived from
this result via the Csiszar-Kullback inequality.
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Convergence analysis for the NFPE
and its application to the PME

Eu(x,O)




Convergence analysis for the NFPE
and its application to the PME

uix)




Remark: L1-norm convergence rate

Csiszar-Kullback inequality [carrillo & Toscani 00]

|1 — f2lI2 < CD[f1]|f2], 3C > 0

The proposition implies that
L1 convergence rateto M is1//1 + ¢

fasterthan1/t? (B < 1/2 if m > 1)
L1 convergence rate to the self-similar solution +B"
[Toscani 05]




Self-similar solution «B"

= Proposition
Self-similar solution is an m- and e-geodesic

uBP(a,t) =t~ expy (27O (H)z — (0, O(t)))
o) =—t"1L7




Conclusions

Behavioral analysis of solutions to the PME
and NFPE focusing on the g-Gaussian family.

Constants of motions, evolutional speeds,
convergence rate to M.

Generalized concepts of statistical physics

Future work
Relation with Otto’s result (\Wasserstein
geometry)

The other parameter range: m<1 (fast
diffusion), 2<m, or the other type of diffusion
equation a7
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