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Introduction (1) 
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 Porous medium equation (PME) 

 

 

 Example: Diffusion coefficient depending on 

the power of u 

 Percolation in porous medium,  

 intensive thermal wave, … 

 Slow diffusion (anomalous diffusion):  

 Finite propagation speed 

 m=1 (normal diffusion): Infinite propagation speed  



Solution of the PME for 1D case 

(initial function with bounded support) 
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m =1.5 

                                          

            propagation speed is finite 



Introduction (2) 

 Nonlinear Fokker-Planck equation (NFPE) 

 

 

 Corresponding physical phenomena Slow 

diffusion + drift force (by quadratic potential) 

 equilibrium density exists 

 Nonlinear transformation between the PME 

and the NFPE 
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Previous work 

[Aronson], [Vazquez], [Toscani] and many 

others… 

 

 Existence, uniqueness & mass conservation 

 W.l.o.g. we consider probability densities 

 Special solution: self-similar solution 

 Convergence rate to the self-similar solution 

 Lyapunov functional (free energy) technique 
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Introduction (3) 

 The purpose of the presentation: 

 Behavioral analysis of the PME type diffusion 

eq. focusing on a stable invariant manifold 

           the family of q-Gaussian densities 

 

 A new point of view  

 Technique and concepts from Information 

Geometry can be applied 



Outline 

 1.Generalized entropy and exponential family 

 2.Information geometry on the q-Gaussian 

family and analytical tools 

 3.Behavioral analysis of the PME and NFPE 

 Invariant manifold 

 The second moments, m-projection, geodesic 

 Peculiar phenomena to slow diffusion 

 Convergence rate to the q-Gaussian family 
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1. Generalized entropy and  

exp family  (1) [Naudts 02 & 04], [Eguchi04]  

        :strictly increasing and positive on  

 generalized logarithmic function 

 

 

 

 generalized exponential function 

             : the inverse of  

 convex function  

 

- Strictly inc. 

- Concave 

-  

to define entropy 
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Generalized entropy and  

exp family (2) 

 Bregman divergence 

 

 Generalized entropy 

 

 

 Generalized exponential model 

 

    : canonical paramtr.,          : normalizing const 

     : vector of stochastic variables (Hamiltonian) 



Remark [Naudts 02, 04] 

 Requirements to the generalized entropy: 

 1. For a certain    , the entropy should be of 

the form: 

 

 

 2.          -family achieves an ME for  

Then            in the previous slide is determined.   

 

          is called the deduced log func of    



Another representation of  

 Conjugate function of 

 

 

 U-divergence [Eguchi 04]  
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Example (1) (to be used later)  

 Generalized log  q-logarithm   q: real  

 

 Generalized exp  q-exponential 

 

 

                                                             PME 

 Generalized entropy 

(2-q)-Tsallis entropy 



Example (2) (to be used later) 

 Bregman divergence 

 

 Gen. exp family  q-Gaussian family 

 

 

 

 

 

 When q goes to 1, all of them recover to the 

standard ones. 13 

q-Gaussian  

density 



14 

2. Information geometry [Amari,Nagaoka00]  

on q-Gaussian family 

       :finite dimensional manifold in  

 Potential function on 

 

 

          :Legendre transform of  

 Legendre structure on       compatible with 

statistical physics 

 Riemannian metric, covariant derivatives, 

geodesics and so on. 
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Important tools from IG (1) 

 1. dual coordinates (Expectation parameters) 

 

 

 Expectation of each          

        (= the 1st and 2nd moments for q-Gaussian) 

 2. m-geodesic 

 a curve on      represented as a straight line  

    in the    -coordinates 



Important tools from IG (2) 

 3. m-projection of  
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(-1) 

m-projection 
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Useful properties of the m-projection 

 

 

 

 

 

 

 

 Rem: The property i) claims that the 1st and 

2nd moments are conserved. 



3. Behavioral analysis of PME and NFPE 

 PME: 

 

 NFPE: 

 

 Relation between u and p [Vazquez 03] 



Key preliminary result 

                 Assumption: 1<m=2-q<2 

Proposition 

 The q-Gaussian family      is a stable invariant 

manifold of the PME and NFPE.  

Idea of the proof)  

   Show the R.H.S. of the PME           is tangent 

to       when     is on      .  
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Trajectories of m-projections (PME) 

 The 1st and 2nd moments of u(t) 

 

      where 

 

 

Thm 

 The m-projection of the solution to the PME 

evolves following an m-geodesic curve, i.e., 

its expectation coordinate is a straight line. 
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Properties of the m-projection and 

behavioral analysis 

 

m-geodesic 



Idea of the proof 

 Time derivatives of the moments: 

 

 

 

 

 

 

                      straight line in the    -coordinates 
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Implication of the theorem (1) 

 The theorem implies the existence of 

nontrivial N-1 constants of motions.  N=dim      

 

 

 

 

 

 A solution to the PME on the invariant 

manifold      is possibly solvable by 

quadratures. 
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Implication of the theorem (2) 

Corollary: Let               and                         be 

solutions of the PME.  

If                                      at             , then 
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Implication of the theorem (3) 

 Idea of the proof 

 The formula of the 2nd moments + the property 

i) of the m-projection 

 The corollary shows that the evolutional 

speed of each solution depends on the 

Bregman divergence from      . 

    (=the difference of the entropies) 

 When m=1 (normal diffusion), such a  

phenomenon does not occur.  
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Difference of the second moments 



Difference of the evolutional speed 



Convergence analysis for the NFPE 

and its application to the PME 

 Generalized free energy 

 

 

 It works as a Lyapunov functional for the NFPE: 

 

 

 The equilibrium density is a q-Gaussian: 
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Convergence analysis for the NFPE 

and its application to the PME 

 Difference of the free energy from the 

equilibrium density:  

 

 

 

 Thus,                             is monotone 

decreasing. 

         Interpreted as a generalized H-theorem 
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Convergence analysis for the NFPE 

and its application to the PME 

  1. The property ii) of the m-projection: 
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Convergence analysis for the NFPE 

and its application to the PME 

 2. The known convergence result [Toscani05] 

 

 

 3. The property of the transformation between 

the PME and the NFPE  

            If     is a transform of    , then   

       is an m-projection of u 

                             is an m-projection of  p 

   
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Convergence analysis for the NFPE 

and its application to the PME 

 Using 1, 2 and 3, we have the following: 

 

 

 

 

 

 Convergence rate to the q-Gaussian family 

 L1-norm convergence rate is derived from 

this result via the Csiszar-Kullback inequality. 
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Convergence analysis for the NFPE 

and its application to the PME 
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Convergence analysis for the NFPE 

and its application to the PME 



Remark: L1-norm convergence rate 

 Csiszar-Kullback inequality [Carrillo & Toscani 00] 

 

 

  The proposition implies that  

            L1 convergence rate to        is 

 

          faster than   

L1 convergence rate to the self-similar solution        

[Toscani 05]   



Self-similar solution 

 Proposition 

   Self-similar solution is an m- and e-geodesic 



Conclusions 

 Behavioral analysis of solutions to the PME 

and NFPE focusing on the q-Gaussian family. 

 Constants of motions, evolutional speeds, 

convergence rate to      . 

 Generalized concepts of statistical physics 

 Future work  

 Relation with Otto’s result (Wasserstein 

geometry) 

 The other parameter range: m<1 (fast 

diffusion), 2<m, or the other type of diffusion 

equation 37 
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