Pattern Recognition and Machine Learning 6.2.

1G06Q117-5 園田 翔*

2009/6/8

1 Constructing Kernels

Kernel function -

1.1 how to construct valid kernel functions

to construct valid kernel functions

- 1. to choose a feature space mapping $\phi(\mathbf{x})$.
- 2. to construct $k(\mathbf{x}, \mathbf{y})$ and find certain $\phi(\mathbf{x})$
- 3. to see if the Gram Matrices $\mathbf{K}_{ij} := k(\mathbf{x}_i, \mathbf{x}_j)$ for all possible $\{\mathbf{x}_n\}$ are positive semidefinite. (necessary and sufficient condition, Shawe-Taylor and Cristianini, 2004)
- 4. to build a kernel out of simpler ones.

Rem. We require that a kernel $k(\mathbf{x}, \mathbf{x}')$

- be symmetric and positive semidefinite
- \bullet expresses the appropriate form of similarity between ${\bf x}$ and ${\bf x}'$

^{*} 早稲田大学理工学部電気・情報生命工学科 村田研究室4年

図 1.7 monomial kernel

☑ 1.8 gaussiann kernel

☑ 1.9 logistic sigmoid kernel

the followings are valid kernels.

Given $k_1(\mathbf{x}, \mathbf{x}'), k_2(\mathbf{x}, \mathbf{x}')$ to be valid,

$$k(\mathbf{x}, \mathbf{x}') := f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}') \quad (f : \text{function})$$
(1.1)

$$k(\mathbf{x}, \mathbf{x}') := ck_1(\mathbf{x}, \mathbf{x}') \quad (c : positive constant)$$
 (1.2)

$$k(\mathbf{x}, \mathbf{x}') := k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}') \tag{1.3}$$

$$k(\mathbf{x}, \mathbf{x}') := k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}') \tag{1.4}$$

$$k(\mathbf{x}, \mathbf{x}') := q(k_1(\mathbf{x}, \mathbf{x}'))$$
 (q: polynomial with nonnegatibe coefficients) (1.5)

$$k(\mathbf{x}, \mathbf{x}') := \exp(k_1(\mathbf{x}, \mathbf{x}')) \tag{1.6}$$

$$k(\mathbf{x}, \mathbf{x}') := k_3(\phi(\mathbf{x}), \phi(\mathbf{x}')) \quad (\phi(\mathbf{x}) \in \mathbb{R}^N, k_3(\mathbf{x}, \mathbf{x}') \text{ is a valid kernel in } \mathbb{R}^N)$$
 (1.7)

$$k(\mathbf{x}, \mathbf{x}') := \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}' \quad (\mathbf{x} \in \mathbb{R}^{M}, \mathbf{A} : \text{sym. pos. semidef.})$$
 (1.8)

$$k(\mathbf{x}, \mathbf{x}') := k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b) \quad (\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b))$$

$$(1.9)$$

$$k(\mathbf{x}, \mathbf{x}') := k_a(\mathbf{x}_a, \mathbf{x}_a') k_b(\mathbf{x}_b, \mathbf{x}_b') \tag{1.10}$$

Proofs

1.6

Ex1. Polynomial kernel

Polynomial kernel

$$\mathbf{x}, \mathbf{x}' \in \mathbb{R}^N, c > 0$$

$$\mathbf{x}, \mathbf{x}' \in \mathbb{R}^{N}, c > 0$$

$$k(\mathbf{x}, \mathbf{x}') := (\mathbf{x}^{\mathrm{T}} \mathbf{x}')^{M}$$

$$k(\mathbf{x}, \mathbf{x}') := (\mathbf{x}^{\mathrm{T}} \mathbf{x}' + c)^{M}$$

$$(1.11)$$

$$k(\mathbf{x}, \mathbf{x}') := (\mathbf{x}^{\mathrm{T}} \mathbf{x}' + c)^{M} \tag{1.12}$$

- (1.11) contains all monomials order M.
- Whereas (1.12) contains all terms up to degree M.
- If \mathbf{x} and \mathbf{x}' are two images, it represents a particular weighted sum of products of M pixels in the \mathbf{x} with M pixels in the \mathbf{x}' .

Ex2. Gaussian kernel

Gaussian kernel

 $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^N$

$$k(\mathbf{x}, \mathbf{x}') := \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right)$$
(1.13)

$$= \exp\left(-\frac{\mathbf{x}^{\mathrm{T}}\mathbf{x} + (\mathbf{x}')^{\mathrm{T}}\mathbf{x}' - 2\mathbf{x}^{\mathrm{T}}\mathbf{x}'}{2\sigma^{2}}\right)$$
(1.14)

 $\kappa(\mathbf{x}, \mathbf{x}')$: nonlinear kernel

$$k(\mathbf{x}, \mathbf{x}') := \exp\left(-\frac{\kappa(\mathbf{x}, \mathbf{x}) + \kappa(\mathbf{x}', \mathbf{x}') - 2\kappa(\mathbf{x}, \mathbf{x}')}{2\sigma^2}\right)$$
(1.15)

Ex3. Kernels over graphs, sets, strings and text documents.

The kernel defined over sets —

D: fixed set

 $A_1, A_2 \subset D$

$$k(A_1, A_2) := 2^{|A_1 \cap A_2|} \tag{1.16}$$

where |A| denotes the number of elements in A

• Kernels can be defined over graphs, sets, strings and text documents.

Ex4. Kernels from probabilistic generative models

- Generative models can deal naturally with missing data, and in the case of HMMs it can handle sequences of varying length.
- Whereas Discriminative models generally give BETTER performance.
- In order to combine two approaches, we define a kernel using a generatibe model, and apply the kernel in a discriminative approach.

- The kernel defined over sets -

 $p(\mathbf{x})$: generative model

$$k(\mathbf{x}, \mathbf{x}') := p(\mathbf{x})p(\mathbf{x}') \tag{1.17}$$

p(i): positive weighting coefficients, or 'latent' variable (§9.2)

 $p(\mathbf{z})$: weighting coefficients for continuous latent variable

$$k(\mathbf{x}, \mathbf{x}') := \sum_{i} p(\mathbf{x}|i)p(\mathbf{x}'|i)p(i)$$
 (1.18)

$$\xrightarrow[i\to\infty]{} \int p(\mathbf{x}|\mathbf{z})p(\mathbf{x}'|\mathbf{z})p(\mathbf{z})d\mathbf{z} \tag{1.19}$$

HMM (§13.2)

 $\mathbf{X} = {\mathbf{x}_1, \cdots, \mathbf{x}_L}$: input data consists of ordered sequences.

 $\mathbf{Z} = \{\mathbf{z}_1, \cdots, \mathbf{z}_L\}$: corresponding sequence of hidden states.

$$k(\mathbf{X}, \mathbf{X}') := \sum_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z}) p(\mathbf{X}'|\mathbf{Z}) p(\mathbf{Z})$$
(1.20)

- (1.17) represents that \mathbf{x} and \mathbf{x}' are similar if they have high probabilities.
- (1.18) is equivalent, if normalized, to a mixture distribution.
- A popular generative model for sequences is the HMM, which expresses the distribution $p(\mathbf{X})$ as a marginalization over \mathbf{Z} .
- (1.20) measures the similarity of two sequences.

Ex5. Fisher kernel

- Fisher kernel -

 $p(\mathbf{x}|\theta)$: θ -parametrized generative model

Fisher score:

$$\mathbf{g}(\theta, \mathbf{x}) := \nabla_{\theta} \ln p(\mathbf{x}|\theta) \tag{1.21}$$

Fisher information matrix:

$$\mathbf{F} := \mathbb{E}_{\mathbf{x}} \left[\mathbf{g}(\theta, \mathbf{x}) \mathbf{g}(\theta, \mathbf{x})^{\mathrm{T}} \right]$$
(1.22)

$$= \int \begin{pmatrix} \frac{\partial \ln p(\mathbf{x}|\theta)}{\partial \theta_1} & \frac{\partial \ln p(\mathbf{x}|\theta)}{\partial \theta_1} & \cdots & \frac{\partial \ln p(\mathbf{x}|\theta)}{\partial \theta_1} & \frac{\partial \ln p(\mathbf{x}|\theta)}{\partial \theta_P} \\ \vdots & \ddots & \vdots \\ \frac{\partial \ln p(\mathbf{x}|\theta)}{\partial \theta_P} & \frac{\partial \ln p(\mathbf{x}|\theta)}{\partial \theta_1} & \cdots & \frac{\partial \ln p(\mathbf{x}|\theta)}{\partial \theta_P} & \frac{\partial \ln p(\mathbf{x}|\theta)}{\partial \theta_P} \end{pmatrix} p(\mathbf{x}|\theta) d\mathbf{x}$$
(1.23)

Fisher kernel:

$$k(\mathbf{x}, \mathbf{x}') := \mathbf{g}(\theta, \mathbf{x})^{\mathrm{T}} \mathbf{F}^{-1} \mathbf{g}(\theta, \mathbf{x}')$$
(1.24)

- It measures the similarity between \mathbf{x} and \mathbf{x}' induced by the generative model $p(\mathbf{x}|\theta)$.
- It can be motivated from the perspective of information geometry.(Amari, 1998)
- form-invariant under a nonlinear re-parametrization : $\theta \to \psi(\theta)$ [Proof.]

Let
$$f(\theta) := \ln p(\mathbf{x}|\theta), \ \widetilde{f}(\psi(\theta)) := f(\theta)$$

$$\mathbf{g}(\theta, \mathbf{x}) = \frac{\partial f(\theta)}{\partial \theta} = \frac{\partial \widetilde{f}(\psi(\theta))}{\partial \theta} = \mathcal{J}\mathbf{h}(\psi, \mathbf{x}) \quad \left(\mathcal{J} := \left(\frac{\partial \psi}{\partial \theta}\right)^{\mathrm{T}}, \mathbf{h}(\psi, \mathbf{x}) := \frac{\partial \widetilde{f}(\psi)}{\partial \psi}\right)$$
(1.25)

Therefore,

$$\mathbf{F} = \mathbb{E}_{\mathbf{x}}[\mathbf{g}(\theta, \mathbf{x})\mathbf{g}(\theta, \mathbf{x}')^{\mathrm{T}}]$$
(1.26)

$$= \mathbb{E}_{\mathbf{x}}[\mathcal{J}\mathbf{h}(\psi, \mathbf{x})\mathbf{h}(\psi, \mathbf{x}')^{\mathrm{T}}\mathcal{J}^{\mathrm{T}}]$$
(1.27)

$$= \mathcal{J}\mathbb{E}_{\mathbf{x}}[\mathbf{h}(\psi, \mathbf{x})\mathbf{h}(\psi, \mathbf{x}')^{\mathrm{T}}]\mathcal{J}^{\mathrm{T}}$$
(1.28)

Then,

$$\mathbf{g}(\theta, \mathbf{x})^{\mathrm{T}} \mathbf{F}^{-1} \mathbf{g}(\theta, \mathbf{x}') = \mathbf{h}(\psi, \mathbf{x})^{\mathrm{T}} \mathcal{J}^{\mathrm{T}} \left(\mathcal{J}^{\mathrm{T}} \right)^{-1} \left(\mathbb{E}_{\mathbf{x}} [\mathbf{h}(\psi, \mathbf{x}) \mathbf{h}(\psi, \mathbf{x}')^{\mathrm{T}}] \right)^{-1} \mathcal{J}^{-1} \mathcal{J} \mathbf{h}(\psi, \mathbf{x}) \mathbf{h}(\psi, \mathbf{x}')^{\mathrm{T}} \right)^{-1} \mathbf{h}(\psi, \mathbf{x}')$$

$$= \mathbf{h}(\psi, \mathbf{x})^{\mathrm{T}} \left(\mathbb{E}_{\mathbf{x}} [\mathbf{h}(\psi, \mathbf{x}) \mathbf{h}(\psi, \mathbf{x}')^{\mathrm{T}}] \right)^{-1} \mathbf{h}(\psi, \mathbf{x}')$$

$$(1.30)$$

Q.E.D.

• In practice, we substitute the sample average for the proper **F**.

$$\mathbf{F} \simeq \frac{1}{N} \sum_{n=1}^{N} \mathbf{g}(\theta, \mathbf{x_n}) \mathbf{g}(\theta, \mathbf{x_n})^{\mathrm{T}}$$
(1.31)

This is the covariance matrix of the Fisher scores. Thus the kernel corresponds to a whitening of these scores.

- ullet or, more simply replace ${f F} \to {f I}$. This is NO MORE form-invariant.
- Fisher kernels applied to document retrieval.(Hofmann, 2000)

Ex6. Sigmoidal kernel

Sigmoidal kernel
$$k(\mathbf{x}, \mathbf{x}') := \tanh(a\mathbf{x}^{\mathrm{T}}\mathbf{x}' + b)$$
 (1.32)

- This is NOT positive semidefinite in general.
- \bullet superficial resemblances between SVMs and NNs.
- some Baysian NNs have deeper links to kernel methods. (§6.4.7)