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1 Constructing Kernels
Kernel function
E @ XxX — RNxRV — R
W W W

(6,x) = (@(x),6(x)) = L ai(x)ai(x) = (d(x),0(x));

1.1 how to construct valid kernel functions

K to construct valid kernel functions

1. to choose a feature space mapping ¢(x).

2. to construct k(x,y) and find certain ¢(x)

2004)

4. to build a kernel out of simpler ones.

N

3. to see if the Gram Matrices K;; = k(x;,x;) for all possible {x,,} are positive

semidefinite. (necessary and sufficient condition, Shawe-Taylor and Cristianini,

Rem. We require that a kernel k(x,x")

e be symmetric and positive semidefinite

e expresses the appropriate form of similarity between x and x’
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e the followings are valid kernels. ~
Given k;(x,x’), ka(x,x) to be valid,
k(x,x") := f(x)ki1(x,x") f(x") ( f: function ) (1.1)
k(x,x) := cki(x,x’) (c: positive constant ) (1.2)
k(x,x') := k1 (x,x") + ka(x, %) (1.3)
k(x,x") := k1 (x,x")ko(x,x) (1.4)
k(x,x') := q(k1(x,x’)) ( q: polynomial with nonnegatibe coefficients ) (1.5)
k(x,x") := exp(k1(x,x")) (1.6)
k(x,x") = k3(p(x),0(x")) ( ¢(x) € RY, k3(x,x’) is a valid kernel in RY)  (1.7)
E(x,x') :=xTAx’ (xcRM A :sym. pos. semidef. ) (1.8)
k(x,x') = ko (X0, %5) + ko (xp,%;) (X = (X4,%p) ) (1.9)
k(x,x') := kqo(Xq, x5 kp(xp, X,) (1.10)




Proofs

1.6

Ex1. Polynomial kernel

Polynomial kernel
x,x’ RN, ¢>0

k(x,x') = (x'x)M (1.11)
E(x,x') = (x'x +c)M (1.12)

e ( 1.11 ) contains all monomials order M.
e Whereas ( 1.12 ) contains all terms up to degree M.
e If x and x’ are two images, it represents a particular weighted sum of products of M

pixels in the x with M pixels in the x’.

Ex2. Gaussian kernel

. Gaussian kernel ~
x,x' € RN
12
k(x,x) := exp <—”X20>2(H> (1.13)
xTx + (x/)Tx" — 2xTx/
= — 1.14
e - ) (114)

k(x,x) : nonlinear kernel

k(x,x) := exp <_K(X7X) . H(X;:;/) = 26(x X/)> (1.15)

N J

Ex3. Kernels over graphs, sets, strings and text documents.

( The kernel defined over sets ~N
D : fixed set
Al, AQ cD

k(Ap, Ag) = 2lA1N4z] (1.16)

where |A| denotes the number of elements in A

e Kernels can be defined over graphs, sets, strings and text documents.




Ex4. Kernels from probabilistic generative models

e Generative models can deal naturally with missing data,
and in the case of HMMs it can handle sequences of varying length.
o Whereas Discriminative models generally give BETTER performance.
e In order to combine two approaches, we define a kernel using a generatibe model, and

apply the kernel in a discriminative approach.

( The kernel defined over sets ~N

p(x) : generative model
k(x,x") := p(x)p(x’) (1.17)

p(i) : positive weighting coefficients, or ’latent’ variable (§9.2)

p(z) : weighting coefficients for continuous latent variable

keox) = ) pxli)p([0)p(i) (1.18)

PR p(x|z)p(x'|2)p(z)dz (1.19)
HMM (§13.2)
X ={x1, -+ ,x5} : input data consists of ordered sequences.
Z ={zy,---,z1} : corresponding sequence of hidden states.
KX, X') =Y p(X|Z)p(X'|Z)p(Z) (1.20)
7
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e ( 1.17 ) represents that x and x" are similar if they have high probabilities.

e ( 1.18 ) is equivalent, if normalized, to a mixture distribution.

e A popular generative model for sequences is the HMM, which expresses the distribution
p(X) as a marginalization over Z.

e ( 1.20 ) measures the similarity of two sequences.



Ex5. Fisher kernel

( Fisher kernel ™

p(x]6) : f-parametrized generative model

Fisher score :
g(0,x) := VyInp(x|0) (1.21)

Fisher information matrix :

F:=E, [g(G,x)g(@,x)T} (1.22)
Olnp(x[0) Olnp(x|0) 0 ln p(x|0) 01ln p(x|0)
00, 00, 001 00p
_ / : : p(x|0)dx (1.23)
Olnp(x[0) Olnp(x|0) 0 ln p(x|0) 01n p(x|0)
00p 061 0fp 90p

Fisher kernel :

L k(x,x') = g(0,x)" Fg(6,x) (1‘24)/

e It measures the similarity between x and x’ induced by the generative model p(x|6).
e It can be motivated from the perspective of information geometry.(Amari, 1998)
e form-invariant under a nonlinear re-parametrization : § — ()

[Proof.]
Let £(6) := Inp(x|6), f((9)) := f(6)

. : )
g(0.x) = 2O _Fwe) _ <j - <aw) B x) W)

00 00 00 oY

(1.25)

Therefore,
F = E.[g(0,x)g(0,x)"] (1.26)
— Ey[Th(e, x)h(v, x') "] (1.27)
— JE (e, x)h(eh, x') 1T T (1.28)

Then,

g(0,%)"F'g(0,x') = h(s,x)" T (I7) " (Ex[h(v, x)h(v,x) ")) T Th(E,39)
= h(,x)" (Ex[h(¢, x)h(e,x)"]) " h(y,x) (1.30)

Q.E.D.

e In practice, we substitute the sample average for the proper F.

N
1
Fo = g0 %a)g(6: x0)" (1.31)
n=1

This is the covariance matrix of the Fisher scores. Thus the kernel corresponds to a

whitening of these scores.



e or, more simply replace F — I. This is NO MORE form-invariant.

e Fisher kernels applied to document retrieval.(Hofmann, 2000)

Ex6. Sigmoidal kernel

Sigmoidal kernel
[ k(x,x') := tanh(ax"x" + b) (1.32))

e This is NOT positive semidefinite in general.

e superficial resemblances between SVMs and NNs.

e some Baysian NNs have deeper links to kernel methods. (§6.4.7)



