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Abstract. The hypervolume measure is one of the most frequently ap-
plied measures for comparing the results of evolutionary multiobjective
optimization algorithms (EMOA). The idea to use this measure for selec-
tion is self-evident. A steady-state EMOA will be devised, that combines
concepts of non-dominated sorting with a selection operator based on the
hypervolume measure. The algorithm computes a well distributed set of
solutions with bounded size thereby focussing on interesting regions of
the Pareto front(s). By means of standard benchmark problems the al-
gorithm will be compared to other well established EMOA. The results
show that our new algorithm achieves good convergence to the Pareto
front and outperforms standard methods in the hypervolume covered.
We also studied the applicability of the new approach in the important
field of design optimization. In order to reduce the number of time con-
suming precise function evaluations, the algorithm will be supported by
approximate function evaluations based on Kriging metamodels. First
results on an airfoil redesign problem indicate a good performance of
this approach, especially if the computation of a small, bounded number
of well-distributed solutions is desired.

1 Introduction

Pareto optimization [1, 2] has become a well established technique for detect-
ing interesting solution candidates for multiobjective optimization problems. It
enables the decision maker to filter efficient solutions and to discover trade-offs
between opposing objectives among these solutions. Provided a set of objec-
tive functions f1,...,n : S → R defined on some search space S to be minimized,
in Pareto optimization the aim is to detect the Pareto-optimal set M = {x ∈
S|�x′ ∈ S : x′ ≺ x}, or at least a good approximation to this set.

In practice, the decision maker wishes to evaluate only a limited number of
Pareto-optimal solutions. This is due to the limited amount of time for examin-
ing the applicability of the solutions to be realized in practice. Typically these
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solutions should include extremal solutions as well as solutions that are located
in parts of the solution space, where balanced trade-offs can be found.

A measure for the quality of a non-dominated set is the hypervolume measure
or S metric [3]. Until now, research mainly focussed on two approaches to utilize
the S metric for multiobjective optimization: Fleischer [4] suggested to recast
the multiobjective optimization problem to a single objective one by maximizing
the S metric of a finite set of non-dominated points. Knowles et al. utilized the
S metric within an archiving strategy for EMOA [5, 6].

Going one step further, our aim was to construct an algorithm in which the
S metric governs the selection operator of an EMOA in order to find a set of
solutions well distributed on the Pareto front. The basic idea of this EMOA
is to integrate new points in the population, if replacing a member increases
the hypervolume covered by the population. Moreover, we aimed at an algo-
rithm that can easily be parallelized and is simple and transparent. It should be
extendable by problem specific features, like approximate function evaluations.
Thus, a steady-state (µ + 1)-EMOA, the so-called S metric selection EMOA
(SMS-EMOA), is proposed.

Notice that in contrast to Knowles et al. [6], we do not evaluate an archiving
operator solely, but the dynamics of a complete EMOA based on S metric selec-
tion. In our opinion, the design of an EA suitable for a given problem or a series
of test problems is a multiobjective task again. This way we look at archiving
strategies as only one component of the whole EMOA.

The article is structured as follows: The hypervolume or S metric that is
used in the selection of our algorithm is discussed first (section 2). Afterwards,
the integration in an EMOA as well as some features are described (section 3).
Section 4 deals with the performance on several test problems whereas the results
achieved on a real world design problem are the topic of section 5, including
results with approximate function evaluations. In particular, the coupling of our
method to a metamodel assisted fitness function approximation tool is presented
here. We close with a summary and an outlook to implied future tasks (section 6).

2 The Hypervolume Measure

The hypervolume measure or S metric was originally proposed by Zitzler and
Thiele [3], who called it the size of the space covered or size of dominated space.
Coello Coello, Van Veldhuizen and Lamont [2] described it as the Lebesgue
measure Λ of the union of hypercubes ai defined by a non-dominated point mi

and a reference point xref :

S(M) := Λ({
⋃

i

ai|mi ∈ M}) = Λ(
⋃

m∈M

{x|m ≺ x ≺ xref}). (1)

Zitzler and Thiele note that this measure prefers convex regions to non-
convex ones [3]. A major drawback was the computational time for recursively
calculating the values of S. Knowles and Corne [5] estimated O(kn+1) with
k being the number of solutions in the Pareto set and n being the number
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of objectives. Furthermore, an accurate calculation of the S metric requires a
normalized and positive objective space and a careful choice of the reference
point. In [5, 7] Knowles and Corne gave an example with two Pareto fronts,
A and B, in the two dimensional case. They showed either S(A) < S(B) or
S(B) < S(A) depending on the choice of the reference point.

Despite these disadvantages, the S metric is currently the only unary qual-
ity measure that is complete with respect to weak out-performance, while also
indicating with certainty that one set is not worse than another [6]. It was used
in several comparative studies of EMOA, e.g. [8, 9, 10]. Quite recently, Fleischer
[4] proofed that the maximum of S is a necessary and sufficient condition for a
finite true Pareto front (|PFtrue| < ∞):

PFknown = PFtrue ⇐⇒ S(PFknown) = max(S(PFknown)). (2)

Moreover, he developed a method for computing the S metric of a set in poly-
nomial time: O(k3n2) [4]. This algorithm led to the efficient integration of the
S metric in archiving strategies [6].

In addition, the S metric of a set of non-dominated solutions is suggested
as a mapping to a scalar value. Fleischer proposed the use of metaheuristics to
optimize this scalar. His idea was to try simulated annealing (SA) resulting in a
provable global convergent algorithm towards the true Pareto front [4].

3 The Algorithm

Our aim was to design an EMOA that covers a maximal hypervolume with a
limited number of points. Furthermore, we wanted to diminish the problem of
choosing the right reference point. Our SMS-EMOA combines ideas borrowed
from other EMOA, like the well established NSGA-II [11] and archiving strate-
gies presented by Knowles, Corne, and Fleischer [5, 6]. It is a steady-state evolu-
tionary algorithm with constant population size that firstly uses non-dominated
sorting as a ranking criterion. Secondly the hypervolume is applied as selection
criterion to discard that individual, which contributes least hypervolume to the
worst-ranked Pareto-optimal front.

3.1 Details of the SMS-EMOA

A basic feature of the SMS-EMOA is that it updates a population of individuals
within a steady-state approach, i. e. by generating only one new individual in each
iteration. The basic algorithm is described in algorithm 1. Starting with an initial
population of µ individuals, a new individual is generated by means of random
variation operators1. The individual enters the population, if replacing a member

1 We employed the variation operators used by Deb et al. for their ε-MOEA algorithm
[10]. These are the SBX recombination and a polynomial mutation operator, described
in detail in [1]. We used the implementation available on the KanGAL home page
http://www.iitk.ac.in/kangal/.
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increases the hypervolume covered by the population. By this rule, individuals
may always enter, if they replace dominated individuals and therefore contribute
to a higher quality of the population. Apparently, the selection criterion assures
that no non-dominated individual is replaced by a dominated one.

Before we will further explicate this selection strategy, we will spend a few
more words on the steady-state approach. A steady-state scheme seems to be
well suited for our approach, since it can be easily parallelized, enables the
algorithm to keep a high diversity, and allows for an efficient implementation of
the selection based on the hypervolume measure.

Algorithm 1 SMS-EMOA
1: P0 ← init() /* Initialize random start population of µ individuals */
2: t← 0
3: repeat
4: qt+1 ← generate(Pt) /* Generate one offspring by variation operators */
5: Pt+1 ← Reduce(Pt ∪ {qt+1}) /* Select µ individuals for the new population */
6: t← t + 1
7: until stop criterium reached

In contrast to other strategies that store non-dominated individuals in an
archive, the SMS-EMOA keeps a population of non-dominated and dominated
individuals at constant size. A variable population size might lead to single indi-
vidual populations in the worst case and therefore to a crucial loss of diversity for
succeeding populations. If the population size is kept constant, the population
may also have to include dominated individuals. In order to decide, which in-
dividuals are eliminated in the selection, also preferences among the dominated
solutions have to be established.

Algorithm 2 Reduce(Q)
1: {R1, . . . ,RI} ← fast-nondominated-sort(Q)
2: /* all I non-dominated fronts of Q */
3: r ← argmins∈RI [∆S(s,RI)] /* detect element of RI with lowest ∆S(s,RI) */
4: Q′ ← Q \ {r} /* eliminate detected element */
5: return Q′

Algorithm 2 describes the replacement procedure Reduce employed. In order
to decide, which individuals are kept in the population, the concept of Pareto
front ranking from the well-known NSGA-II is be adopted. First, the Pareto
fronts with respect to the non-domination level (or rank) are computed using
the fast-nondominated-sort-algorithm [11]. Afterwards, one individual is dis-
carded from the worst ranked front. If this front comprises |RI | > 1 individuals,
the individual s ∈ RI is eliminated that minimizes

∆S(s,RI) := S(RI) − S(RI \ {s}). (3)
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For the case of two objective functions, we take the points of the worst-ranked
non-dominated front and sort them ascending according to the values of the first
objective function f1. We get a sequence that is additionally sorted in descending
order concerning the f2 values, because the points are mutually non-dominated.
Here for RI = {s1, . . . , s|RI |}, ∆S is calculated as follows:

∆S(si,RI) = (f1(si+1) − f1(si)) · (f2(si−1) − f2(si)). (4)

3.2 Theoretical Aspects of the SMS-EMOA

The runtime complexity of the hypervolume procedure in the case of two objec-
tive functions is governed by the sorting algorithm. It is O(µ·logµ), if all points
lie on one non-dominated front. For the case of more than two objectives, we sug-
gest to use the algorithm of Fleischer to calculate the contributing hypervolume
∆S of each point (compare [6]). Here, the runtime complexity of SMS-EMOA is
governed by the calculation of the hypervolume and is O(µ3n2).

The advantage of the steady-state approach is that only subsets of size
(|RI | − 1) have to be considered. By greedily discarding the individual that
minimizes ∆S(s,RI), it is guaranteed that the subset which covers the maximal
hypervolume compared to all |RI | possible subsets remains in the population
(for a proof we refer to Knowles and Corne [5]). With regard to the replacement
operator this also implies that the covered hypervolume of a population cannot
decrease by application of the Reduce operator, i. e. for algorithm 1 we can state
the invariant:

S(Pt) ≤ S(Pt+1). (5)

Note, that the basic algorithm presented here nearly fits into the generic
algorithm scheme AAreduce presented by Knowles et al. [5] within the context
of archiving strategies. The archiving strategy called AAS uses the contributing
hypervolume of the non-dominated points to determine the worst and is the
most similar one to our algorithm among those presented in [5].

Knowles et al. showed that the AAS strategy converges to a subset of the true
Pareto front and therefore to a local optimum of the S metric value achievable
with a bounded set of points. A local optimum means that no replacement of
an archive solution with a new one would increase the archive’s S metric net
value. Provided that the population size in the SMS-EMOA equals the archive
size in AAS and only non-dominated solutions are concerned, the AAS strategy
is equivalent to our method. If dominated solutions are considered as well, the
SMS-EMOA population contains even more solutions than the AAS archive.
Thus, the proof of convergence holds for our algorithm as well. Knowles et al.
analyzed the quality of local optima and remarked in [5] that the points of local
optima of the S metric are “well distributed”.

Often stated criticisms of the hypervolume measure regard the crucial choice
of the reference point and the scaling of the search space. Our method of deter-
mining the solution contributing least to the hypervolume is actually indepen-
dent from the choice of the reference point. The reference point is only needed to
calculate the hypervolume of extremal points of a front and can alternatively be
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Fig. 1. Comparison of crowding distance sorting (left) and sorting by ∆S (right)

omitted, if extremal solution are to be kept anyway. Furthermore, our method
is independent from the scaling of the objective space, in the sense that the
order of solutions is not changed by multiplying the objective functions with a
constant scalar vector.

3.3 Comparison of ∆S and the Crowding Distance

The similarity of the SMS-EMOA to the NSGA-II algorithm is noticable. The
main differences between both procedures are the steady-state selection of the
SMS-EMOA in contrast to the (µ + µ) selection in NSGA-II and the different
ranking of solutions located on the same Pareto front.

We would like to compare the crowding distance measure, that functions as
ranking criterion for solutions of equal Pareto rank in NSGA-II, to the hypervol-
ume based measure ∆S . We recapitulate the definition of the crowding distance:
It is defined as infinity for extremal solutions and as the sum of side lengths of
the cuboid that touches neighboring solutions in case of non-extremal solutions
on the Pareto front. It is meant to distribute solution points uniformly on the
Pareto front. In contrast to this, the hypervolume measure is meant to distribute
them in a way that maximizes the covered hypervolume.

In figure 1 a set R of non-dominated solutions is depicted in a two dimensional
solution space. The left hand side figure shows the lines determining the ranking
of solutions in the NSGA-II. The right hand side figure depicts the same solutions
and their corresponding values of ∆S(s, R), which are given by the areas of
the attached rectangles. Note that for the crowding distance, the value of a
solution xi depends on its neighbors and not directly on the position of the
point itself, in contrast to ∆S(s, R). In both cases extremal solutions are ranked
best, provided we choose a sufficiently large reference point for the hypervolume
measure. Concerning the inner points of the front, x5 (rank 3) outperforms
x4 (rank 4), if the crowding distance is used as a ranking criterion. On the
other hand, x4 (rank 3) outperforms x5 (rank 4), if ∆S(s, R) is employed (right
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figure). This indicates that good compromise solutions, which are located near
knee-points of convex parts of the Pareto front are given better ranks in the SMS-
EMOA than in the NSGA-II algorithm. Practically, solution x5 is less interesting
than solution x4, since in the vicinity of x5 little gains in objective f2 can only
be achieved at the price of large concession in objective f1, which is not what
is sought to be a well-balanced solution. Thus, the new method leads to more
interesting solutions with fair trade-offs. It concentrates on knee-points without
losing extremal points. This serves the practitioner who is mainly interested in
a limited number of solutions on the Pareto front.

4 Test Problems

The SMS-EMOA from the last section was tested on several test problems from
literature. We aimed at comparability to the papers of Deb and his coauthors
presenting their ε-MOEA approach [9, 10]. That is why we also invoked the
variation operators used for that approach. The test problems named ZDT1
to ZDT4 and ZDT6 from [10, 12] have been considered. For reasons of a clear
overview, we copied the results for the hypervolume measure and the convergence
achieved in [10] to table 1. This way, we compared our SMS-EMOA to NSGA-II,
C-NSGA-II, SPEA2, and ε-MOEA.

4.1 Settings

We chose the parameters according to the ones given in [9, 10]. We set µ=100,
calculated 20000 evaluations and used exactly the same variation operators as
used for the ε-MOEA. The results of five runs are considered to create the values
in table 1.

The hypervolume or S metric of the set of non-dominated points is calculated
as described above, using the same reference point as in [9, 10]. The convergence
measure is the average closest euclidean distance to a point of the true Pareto
front as used in [10]. Note that the convergence measure is calculated concerning
a set of 1000 equally distributed solution of the true Pareto front. Even an
arbitrary point of the true Pareto front does not have a convergence value of
0, unless exactly equalling one of these 1000 points. Thus, the values are only
comparable up to a certain degree of accuracy.

4.2 Results

The SMS-EMOA is ranked best concerning the S metric in all functions except
for ZDT6. Concerning the convergence measure, it has two first, two second
and one third rank. According to the sum of ranks of the two measures on
each function, one can state that the SMS-EMOA provides best results on all
considered functions, except for ZDT6, where it is outperformed by SPEA2.
Building the sum of the achieved ranks of each measure shows that our algorithm
obtains best results concerning both the convergence measure (with 9) and the
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Table 1. Results

Test- Convergence measure S metric
function Algorithm Average Std. dev. Rank Average Std. dev. Rank
ZDT1 NSGA-II 0.00054898 6.62e-05 3 0.8701 3.85e-04 5

C-NSGA-II 0.00061173 7.86e-05 4 0.8713 2.25e-04 2
SPEA2 0.00100589 12.06e-05 5 0.8708 1.86e-04 3
ε-MOEA 0.00039545 1.22e-05 1 0.8702 8.25e-05 4
SMS-EMOA 0.00044394 2.88e-05 2 0.8721 2.26e-05 1

ZDT2 NSGA-II 0.00037851 1.88e-05 1 0.5372 3.01e-04 5
C-NSGA-II 0.00040011 1.91e-05 2 0.5374 4.42e-04 3
SPEA2 0.00082852 11.38e-05 5 0.5374 2.61e-04 3
ε-MOEA 0.00046448 2.47e-05 4 0.5383 6.39e-05 2
SMS-EMOA 0.00041004 2.34e-05 3 0.5388 3.60e-05 1

ZDT3 NSGA-II 0.00232321 13.95e-05 3 1.3285 1.72e-04 3
C-NSGA-II 0.00239445 12.30e-05 4 1.3277 9.82e-04 5
SPEA2 0.00260542 15.46e-05 5 1.3276 2.54e-04 4
ε-MOEA 0.00175135 7.45e-05 2 1.3287 1.31e-04 2
SMS-EMOA 0.00057233 5.81e-05 1 1.3295 2.11e-05 1

ZDT4 NSGA-II 0.00639002 0.0043 4 0.8613 0.00640 2
C-NSGA-II 0.00618386 0.0744 3 0.8558 0.00301 4
SPEA2 0.00769278 0.0043 5 0.8609 0.00536 3
ε-MOEA 0.00259063 0.0006 2 0.8509 0.01537 5
SMS-EMOA 0.00251878 0.0014 1 0.8677 0.00258 1

ZDT6 NSGA-II 0.07896111 0.0067 4 0.3959 0.00894 5
C-NSGA-II 0.07940667 0.0110 5 0.3990 0.01154 4
SPEA2 0.00573584 0.0009 1 0.4968 0.00117 1
ε-MOEA 0.06792800 0.0118 3 0.4112 0.01573 3
SMS-EMOA 0.05043192 0.0217 2 0.4354 0.02957 2

S metric (with 6). So in conjunction, concerning this bundle of test problems,
the SMS-EMOA can be regarded as the best one.

ZDT1 has a smooth convex Pareto front where the SMS-EMOA is ranked best
on the S metric and near to the best concerning the convergence measure. ZDT4
is a multi-modal function with multiple parallel Pareto fronts, whereas the best
front is equivalent to that of ZDT1. On the basis of the given values from [9, 10],
we assume that all algorithms achieved to jump above the second front with most
solutions and aimed at the first front, like our SMS-EMOA. The worse values of
the other algorithms seem to stem from disadvantageous distributions. ZDT2 has
a smooth concave front and the SMS-EMOA covers most hypervolume, despite
the criticism that the S metric favors convex regions. ZDT3 has a discontinuous
Pareto front that consists of five slightly convex parts. Here, the SMS-EMOA
is a little bit better concerning the S metric than the second ranked ε-MOEA
and really better concerning the convergence. ZDT6 has a concave Pareto front
that is equivalent to that of ZDT2, except for the differences that the front is
truncated to a smaller range and that points are non-uniformly spaced. Here, the
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Fig. 2. This study visualizes results on the EBN problem family with Pareto fronts of
different curvature computed by SMS-EMOA for a 20-dimensional search space

SMS-EMOA is ranked second on both measures, only outperformed by SPEA2,
which shows apparently bad results on the other easier functions.

The outstanding performance concerning the S metric is a very encouraging
result even though good results seem to be natural because of the use of the
S metric as selection criterion. One should appreciate that our approach is a
rather simple one with only one population and it is steady-state, resulting in
a low selection pressure. Neither there are any special variation operators fitted
to the selection strategy, nor it is tuned for performance in any way. All these
facts would normally imply not that good results.

The good results in the convergence measure are maybe more surprising. Es-
pecially on the function that are supposed to be more difficult, the SMS-EMOA
achieves very good results. A possible explanation might be that a population
of well distributed points is able to sample individuals with larger improvement.
Further investigations are required to clarify this topic.

4.3 Distribution of Solutions

In order to get an impression of how the SMS-EMOA distributes solutions on
Pareto fronts of different curvature, we conducted a study on simple but high
dimensional test functions. The aim is to observe the algorithms behavior on con-
vex, concave and linear Pareto fronts. For the study, we devised the following
family of simple generic functions:

f1(x) = (
d∑

i=1

|xi|)γd−γ , f2(x) := (
d∑

i=1

|xi − 1|)γd−γ , x ∈ [0, 1]d, (6)

with d being the number of object variables. The ideal criterion vectors for these
bicriterial problems (which we will abbreviate EBN) are given by x∗

1 = (0, . . . , 0),
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f(x∗
1) = (0, 1)T and x∗

2 = (1, . . . , 1), f(x∗
2) = (1, 0)T . By the choice of the param-

eter γ the behavior of these functions can be adjusted. Parameter γ = 1 leads to
a linear Pareto front, while γ > 1 yields convex fronts and γ < 1 concave ones.

Figure 2 shows that the solutions are not equally distributed on the Pareto
front. The results demonstrate that the SMS-EMOA concentrates solutions in
regions where the Pareto front has knee-points and captures the regions with fair
trade-offs between different objectives. The regions with unbalanced trade-offs,
located on the flanks of the Pareto front, are covered with less density, although
extremal solutions are always maintained. On the linear Pareto front the points
get uniformly distributed. In case of a concave Pareto front the regions with fair
trade-offs are emphasized. These are located near the angular point of the Pareto
front. The results can be explained by the way the contributing hypervolume is
defined and is discussed in the previous sections.

5 Design Optimization

A frequently addressed multiobjective design problem is the two-dimensional
NACA redesign of an airfoil [13, 14]. Here, two target airfoils are given, each
almost optimal for predefined flow conditions. A computational fluid dynam-
ics (CFD) tool based on the solutions of Navier-Stokes equations calculates the
properties, e.g. the pressure distribution of airfoils proposed by the coupled op-
timization technique. From these results, the differences in pressure distribution
to the target airfoils are calculated and serve as the two objectives to minimize.
The computation of objective function values based on CFD calculations are
usually very time consuming with one evaluation typically taking several min-
utes, hence only a limited number of evaluations can be afforded. Here, we allow
1000 evaluations to stay comparable to previous studies on this test problem.

5.1 Integration of Fitness Function Approximations

We use Kriging metamodels [15] as fitness function approximation tools to ac-
celerate the SMS-EMOA. The Kriging methods allows for a prediction of the
objective function values for new design points x′ from previously evaluated
points stored in a database. Basically, Kriging is a distance based interpolation
method. In addition to the predicted value, Kriging also provides a confidence
value for each prediction. Based on the statistical assumption of Kriging, the
predicted result y(x′) and the confidence value s(x′) can be interpreted as the
mean value and standard deviation of a one-dimensional gaussian distribution
describing the probability for the ’true’ outcome of the evaluation. We refer to
[15] for technical details of this procedure and the statistical assumptions about
the continuous random process that – as it is assumed – generated the landscape
y(x).

As Kriging itself tends to be time consuming for a large number of training
points, Kriging models are only build from the 2d nearest neighbors of each
point, where d denotes the dimension of the search space.
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Algorithm 3 Metamodel-assisted SMS-EMOA
1: P0 ← init() /* Initialize and evaluate start population of µ individuals */
2: D ← P0 /* Initialize database of precisely evaluated solutions */
3: t← 0
4: repeat
5: Draw st randomly out of Pt

6: ai ← mutate(st), i = 1, . . . , λ /* Generate λ solutions via mutation */
7: approximate(D, a1, . . . , aλ) /* Approximate results with local metamodels */
8: qt+1 ← filter(a1, . . . , aλ) /* Detect ’best’ approximate solution */
9: evaluate qt+1 /* Evaluate selected solution precisely */

10: D ← D ∪ {qt+1}
11: Pt+1 ← Reduce(Pt ∪ {qt+1}) /* Select new population of µ individuals */
12: t← t + 1
13: until stop criterion reached

The new method is depicted in algorithm 3. In order to make extensive use of
approximate evaluations, it proved to be a good strategy, to produce a surplus
of λ individuals by mutation of the same parent individual. For these new in-
dividuals an approximation is computed by means of the local metamodel. The
filter procedure selects the most promising solution then. The chosen solution
gets evaluated precisely and is considered for the Reduce method in the SMS-
EMOA. This ensures that only precisely evaluated solutions enter the population
P and that the amount of approximations employed can be scaled by the user.
All precisely evaluated solutions enter a database, so they can subsequently be
considered for the metamodeling procedure.

The basic idea of the filter algorithm is to devise a criterion based on the
approximate evaluation of a search point. Criteria for the integration of approxi-
mations in EMOA have already been suggested in [14]. Here, confidence interval
boxes in the solution space were calculated as li = ŷi − ωŝi and ui = ŷi + ωŝi,
i = 1, . . . , n, where n is the number of objectives and ω is a confidence factor
that can be used to scale the confidence level. An illustrative example for ap-
proximations with Kriging and confidence interval boxes in a 2-D solution space
is given in figure 3.

Among the criteria introduced in [14], two criteria seemed to be of special
interest: First, the predicted result from the Kriging method, the mean value of
the confidence interval box, is considered as a surrogate for the objective function
value. This corresponds to the frequently employed approach to use merely the
estimated function values as surrogates for the true objective functions and thus
ignore the degree of uncertainty for these approximations. The second criterion
goes one step further and upvalues those points with a high degree of uncertainty,
by using the lower bound edge ŷ − ωŝ of the interval boxes instead of its center
ŷ for the prediction. This offers us a best case estimation for the solution.

Both surrogate points are employed to evaluate a criterion based on the S
metric that is used for sorting the candidate solutions. For the mean value sur-
rogate this is the most likely improvement (MLI) in hypervolume for population
P when selecting x:



An EMO Algorithm Using the Hypervolume Measure as Selection Criterion 73

ω

^

^ ^

0

 5

 10

 15

 20

 0

 5

 10

 15

 20

 0

 0.2

f1

f2

Probability Density

x1

x2

x3

Precisely evaluated points of the current population

Lower bound edges of approximations

y(x) −    s(x)

Mean  values of approximations  y(x)

Fig. 3. Filtering of approximate solutions: Within the mean value criterion only x3

is pre-selected while within the lower bound criterion the contributing hypervolume
values of x1 and x3 are computed

MLI(x) = S(Pt ∪ {ŷ(x)}) − S(Pt) (7)

and for the lower bound edge this is the potential improvement in hypervolume
(LBI), that reads:

LBI(x) = S(Pt ∪ {ŷ − ωŝ(x)}) − S(Pt). (8)

It may occur that all values of the criterion are zero, if all surrogate points are
dominated by the old population. In that case, the Pareto fronts of lower domi-
nance level are considered for computing the values of MLI or LBI, respectively.

For the metamodel-assisted SMS-EMOA the user has to choose the param-
eters ω and λ. If the lower bound criterion is used, the choice of ω determines
the degree of global search by the metamodel. For high values of ω the search
focuses more on the unexplored regions of the search space.

5.2 Results

Like on the test problems, the SMS-EMOA provided very good and encouraging
results on the design optimization problem. For this test series, we collected five
runs for each setting again. We considered SMS-EMOA without fitness function
approximation as well as the metamodel-assisted SMS-EMOA with mean value
and lower bound criterion as described above.

For reasons of comparability, we utilized a method to average Pareto fronts
from [13]. In short, parallel lines are drawn through the corresponding region of
the search space. From the Pareto front of each run, the points with the shortest
distance to these lines are considered for the calculation of the averaged front.

In the left hand part of figure 4 the different dotted sets describe three of the
five Pareto fronts received from the different runs utilizing SMS-EMOA with-
out Kriging. The line represents the received averaged Pareto front. This front is
additionally copied to the right hand side figure for the reason of easier compara-
bility. That figure compares the averaged fronts received using SMS-EMOA with
and without fitness function approximations. In addition, a prior result, the best
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Fig. 4. The left hand side shows three of five runs used for averaging and the cor-
responding averaged front. The right hand side part compares SMS-EMOA without
Kriging, using Kriging with lower bound (LB) and mean value (MEAN) criterion, next
to NSGA-II using Kriging with lower bound criterion

one from the investigation presented in [14] coupling metamodeling techniques
with multiobjective optimization is also included in the figure. This result stems
from NSGA-II runs with Kriging and lower bound criterion within 1000 exact
evaluations as well.

The points on the Pareto fronts achieved using fitness function approxima-
tions are much better distributed than the ones obtained without. In the left
figure, each received Pareto front is biased towards one special region. In the
runs utilizing fitness function approximations no focuses can be recognized. The
solutions are more equally distributed all over the Pareto front, with the aspired
higher density in regions with fair trade-offs as discussed above. The reason are
the thousands of preevaluations that are used to find promising regions of the
search space to place exact evaluations. Compared to the results with Kriging
the runs without Kriging seem not to tap their full potential due to the too small
amount of evaluations.

A clear superiority of the algorithms utilizing metamodels can be recognized.
The averaged front without metamodel integration is the worst front all over
the search space except for the upper left corner, the extreme f2 flank of the
front. In most other regions the SMS-EMOA with lower bound criterion seems
to be better than the other algorithms shortly followed by the old results from
NSGA-II with lower bound criterion. The SMS-EMOA with mean value criterion
yielded the worst front with metamodel integration.

In the extreme f2 flank of the front the results seem to be turned upside down.
Here, the averaged front from runs without model integration achieved the best
results. The left hand side of the figure, however suggests that this might be an
effect of the averaging technique. It seems to be that one run achieves outstanding
results here, which leads to an unbalanced average point that is better than the
averaged points of the other algorithms. This extreme effect could be avoided
by averaging over more than five runs which is a small and statistically not
significant number of course.
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Notice, that the lower bound approximation technique yielded better results
than the mean value approximation again. This was also observed in [14] and
seems to be a general achievement, where more attention should be drawn to.

6 Summary and Outlook

The SMS-EMOA has been devised in this work, which is a promising algorithm
for Pareto optimization, especially if a small, limited number of solutions is de-
sired and areas with balanced trade-offs shall be emphasized. The results on
academic test problems show that the algorithm is rather competitive to es-
tablished EMO algorithms like SPEA2 and NSGA-II regarding the convergence
measure. It clearly outperforms these methods, if the S metric is considered as
performance measure.

Compared to many other EMOA the new approach is simple and efficient
for the two objective case. The selection and variation procedures do not inter-
fere with an extra archive and the number of strategy parameters is very low
(population size and reference point). Instead of specifying a reference point the
SMS-EMOA can also work with an infinite reference point.

The focus of the performance assessment was on the two objective case.
We demonstrated for this case that the approach is of special elegance, since
its implementation is quite simple and the update of the population can be
computed efficiently. Future research will have to deal with the performance
assessment for three and more objectives and for constraint problems.

For a real world airfoil design problem Kriging metamodels have been em-
ployed to save time consuming precise function evaluations. The results indicate
that these techniques can be used to further enhance the performance of the
SMS-EMOA.
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