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Abstract

The hypervolume measure (or % metric) is a frequently applied quality measure for comparing the results of evolution-
ary multiobjective optimisation algorithms (EMOA). The new idea is to aim explicitly for the maximisation of the dom-
inated hypervolume within the optimisation process. A steady-state EMOA is proposed that features a selection operator
based on the hypervolume measure combined with the concept of non-dominated sorting. The algorithm’s population
evolves to a well-distributed set of solutions, thereby focussing on interesting regions of the Pareto front. The performance
of the devised . metric selection EMOA (SMS-EMOA) is compared to state-of-the-art methods on two- and three-objec-
tive benchmark suites as well as on aeronautical real-world applications.
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1. Introduction

Dealing with preferences can be a difficult task in multiobjective optimisation, especially if the knowledge
about the structure of the set of optimal solutions is incomplete. By adopting the a posteriori approach, the
decision maker postpones the final decision on preferences between conflicting objectives until a set of com-
promise solutions is known. Such sets can be obtained by Pareto optimisation [1,2].

In Pareto optimisation, the purpose is to optimise a problem of m objective functions f = (fi,...,f,,) with
fi:S—>R,ie{l,...,m},and S denoting a search (or: decision) space. Here, only minimisation is considered.
In the examined examples, the decision space is a subset of R”, though the proposed algorithms can easily be
generalised to other spaces. Since objectives can be conflicting, instead of searching for a single best solution,
we seek for a set of good compromise solutions. Among solution vectors y,y’ € R” a partial order is defined by
the dominance relation “<":
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y <Y (ydominatesy): <= Vi€ {l,...,m}:y, <)} and Fje{l,....m}:y <y, (1)

For x,x’ € S, we write Xx < x': <= f(x) < f(x’). The minimal elements of the dominance relation are
called Pareto-optimal and the set of Pareto-optimal decision vectors is called Pareto(-optimal) set:
{x € S|Ax' € S:xX <x}. The corresponding image under f in the solution space R" is called Pareto
front. A point in the search space is called non-dominated within a set A C S if there is no point in 4 domi-
nating it.

In practice, it is rarely possible to compute the true Pareto set with any algorithmic method, because of the
black-box character of many objective functions and/or the complexity of the search space. Instead, algo-
rithms are intended to yield approximations of the Pareto front and thereby the Pareto set.

Among Pareto optimisation techniques, EMOA established themselves in a leading position concerning
research interests and progress. EMOA are applicable to a wide range of problems and their population based
approach assures an inherent set of best qualified solutions. Therefore, they are well-suited methods, whenever
analytical methods fail to obtain the precise Pareto set.

A variety of quality indicators is used in order to measure the quality of Pareto front approximations.
Among them, the hypervolume measure or & metric is of outstanding importance. It is a quality indicator that
rewards the convergence towards the Pareto front as well as the representative distribution of points along the
front. The hypervolume measure was originally proposed by Zitzler and Thiele [3], who called it the size of
dominated space [4]. Let A denote the Lebesgue measure, then the . metric is defined as

S (B, Yrar) = 4 (U{y/ly <y < yref}) B CR™ (2)
(3]

Here, y.. € R” denotes a reference point that should be dominated by all Pareto-optimal solutions.

Fleischer [5] proved that, given a finite search space and a reference point, maximisation of the hypervo-
lume measure is equivalent to finding the Pareto set. Therefore, a set of bounded size which obtains the max-
imal & metric value that is possible for the given size, only consists of Pareto-optimal solutions. It has been
empirically observed that for a fixed number of points, the maximisation of the hypervolume metric yields sub-
sets of the Pareto front which are well-distributed (cf. [6,7]).

The absolute value of the ¥ metric depends on the choice of the reference point. This dependence can influ-
ence the ranking of Pareto front approximations (cf. [8]). Despite this disadvantage, the . metric was used in
several comparative studies of EMOA, e.g. [4,9,10].

A rather nice characteristic of the hypervolume measure is, that the ranking of the solutions is invariant to
linear scaling of the objective functions. Furthermore, the reference point only influences the relative contri-
bution of the points containing worst values (boundary points). There are further theoretical qualities of the &%
metric which make it a rather fair measure, and preferable to other performance metrics [11].

Although it seems straightforward to consider the quality indicator directly in the selection operator, with a
few exceptions [12,13,7], this option has hardly been considered for the design of EMOA, yet. This article pre-
sents an approach proposed recently by the authors [7], namely the selection of solution candidates according
to their contribution to the dominated hypervolume. It deepens the discussion by emphasising on problems
with three objectives.

The article is structured as follows. In Section 2, we provide a comprehensive description of the
SMS-EMOA and relate it to similar state-of-the-art approaches. A detailed discussion on the algorithm’s
behaviour and qualities is given, including implementation as well as theoretical aspects. Besides, an efficient
modification of the SMS-EMOA is presented which has an improved runtime and in some cases even higher
quality than the basic SMS-EMOA. In addition, efficient algorithms for computing hypervolume contribu-
tions of non-dominated solutions are discussed, with a focus on the two- and three-dimensional case. In
Section 3, we compare the performance of the SMS-EMOA to conventional EMOA on the most common
benchmark problems for evolutionary multiobjective optimisation. The studies of design optimisation tasks
from aeronautic industry, featuring two and three objectives, confirm the applicability of the new approach
to real-world problems (Section 4). Only two- and three-dimensional problems are covered, since these cases
are most frequently addressed in real-world applications. Finally, Section 5 outlines the main conclusions of
this work.
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2. The ¥ metric selection (SMS-) EMOA

The SMS-EMOA has been designed to cover a maximal hypervolume with a finite number of points. Fur-
thermore, we wanted to diminish the problem of choosing the right reference point and aimed at a simple algo-
rithm that can be parallelised in an asynchronous manner and extended by knowledge integrating techniques,
such as approximate function evaluations. The SMS-EMOA combines ideas borrowed from other EMOA,
like the well-established NSGA-II [14] and archiving strategies presented by Knowles et al. [6,8]. It is a
steady-state algorithm founded on two pillars: (1) non-dominated sorting is used as a ranking criterion and
(2) the hypervolume is applied as selection criterion to discard that individual, which contributes the least
hypervolume to the worst-ranked front.

2.1. Details of the SMS-EMOA

The basic algorithm is described in Algorithm 1. Starting with an initial population of u individuals, a new
individual is generated by means of randomised variation operators.' The new individual will become a mem-
ber of the next population, if replacing another individual leads to a higher quality of the population with
respect to the & metric.

Algorithm 1. SMS-EMOA

1: Py « init() /* Initialise random population of u individuals */
2:t—0

3: repeat

4: ;41 < generate(P,) /" generate offspring by variation */
5: P,y < Reduce(P; U {g,+1}) /" select u best individuals */

6: t—1t+1

7: until termination condition fulfilled

The procedure Reduce described in Algorithm 2 selects the u individuals of the subsequent population.
The algorithm fast-nondominated-sort used in NSGA-II [14] is applied to partition the population
in v sets #y,...,#, according to the non-dominated sorting defined by Goldberg [15]. The subsets are called
fronts and are provided with an index representing a hierarchical order (the level of domination) whereas the
solutions within each front are mutually non-dominated. The first subset contains all non-dominated solutions
of the original set Q. The second front consists of individuals that are non-dominated in the set (Q \ %), e.g.
each member of #, is dominated by at least one member of %,. More general, the ith front consists of indi-
viduals that are non-dominated if the individuals of the fronts j with j <i were removed from Q.

Algorithm 2. Reduce(Q)

1: {%,,...,2,} « fast-nondominated-sort(Q) /" all v fronts of O */
2: r «— argming_, (A9 (s, Ry)] /" s € R, with lowest Ay (s, R,) */
3: return (Q\{r}) /* eliminate detected element */

Afterwards, one individual is discarded from the worst ranked front. Whenever this front comprises
|%,| > 1 individuals, the individual s € £, is eliminated that minimises

(5,9 = S(R) — S (A \ {s))- (3)

' If not stated otherwise, we employed the variation operators used by Deb et al. for their e-MOEA algorithm [10]. These are the
simulated binary crossover (SBX) and a polynomial mutation operator, described in detail in [1]. We used the implementation available on
the KanGAL home page http://www.iitk.ac.in/kangal/.
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The value of A4(s,#,) can be interpreted as the exclusive contribution of s to the ¥ metric value of its
appropriate front. By definition of 44(s, %,), an individual, which dominates another is always kept and no
non-dominated individual is replaced by a dominated one. This measure keeps those individuals which
maximise the population’s & metric value, which implies that the covered hypervolume of a population
cannot decrease by application of the Reduce operator. Thus, for Algorithm 1 the following invariant
holds:

F(P) < S (Ppy). (4)

2.1.1. Steady-state selection

Due to the high computational effort of the hypervolume calculation (see Section 2.3), a steady state selec-
tion scheme is used. Since only one individual is created, only one has to be deleted from the population in
each generation. Thus, the selection operator has to compute at most u+1 values of the % metric (exactly
u+ 1 values in case all solutions are non-dominated). These are the values of the subsets of the worst ranked
front, in which one point of the front is left out, respectively. A (u + 1) selection scheme would require the

calculation of (H : A) possible . metric values to identify an optimally composed population, maximising

the . metric net value. Besides, a steady-state scheme can easily be parallelised by means of asynchronously
distributed function evaluations.

2.1.2. Population size

In contrast to other strategies that store non-dominated individuals in an archive, the SMS-EMOA keeps a
population of non-dominated and dominated individuals at constant size. Keeping only non-dominated indi-
viduals, might lead to small or even single-membered populations and thus to a crucial loss of diversity. Mod-
ifications of SMS-EMOA with dynamic population size have been considered in [16]. These variants are
interesting whenever an acceleration of the evolution process in its beginning is desired. To avoid the loss
of diversity, we recommend to define a lower bound for the population size.

2.1.3. Handling of boundary solutions

In a two-dimensional solution space, the reference point y,.r of the % metric is only needed to calculate the
hypervolume of the two extremal points that consist of one best and one worst objective value, respectively.
We decided to omit y,.r and always keep these extremal solutions.

In the case of more objective functions, there can be far more points, whose hypervolume contributions
depend on the choice of the reference point. These exactly are the boundary points which contain atleast
one worst objective value. It is not intended to keep all boundary solutions, thus contributions are calculated
for them as well. We used a dynamic handling of the reference point, where y,r is recalculated in each gen-
eration. It is chosen as the vector of the currently worst objective values increased by 1.0. Thus, the contribu-
tion of a point that contains a worst objective value depends on the remaining objectives as the difference to
the reference point behaves neutral in the product. Thus, good non-extremal solutions might outperform
extremal ones concerning the hypervolume. First observations advised, that the dynamic handling of the ref-
erence point is preferable to a static one.

2.2. Selection variants of SMS-EMOA

A competitive study of several selection modi within the SMS-EMOA framework was presented in [16].
The concepts all feature the contributing hypervolume in combination with non-dominated sorting, the com-
mon dominance criterion, or the number of dominating points. The latter will be described in more detail here.

The number of dominating points d(s, P(t)) is the number of points from set P(¢) that dominate point s,
formally

d(s, P(1)) := {y € P()ly < s}|. (5)
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A modified Reduce procedure is given in Algorithm 3. The number of dominating points (s, P(¢)) is used
as selection criterion in case of dominated solutions and the contributing hypervolume 4 is applied whenever
all individuals of P(f) are non-dominated. If the population consists of more than one front, the individual
with the highest d(s, P(¢)) value among the solutions of the worst ranked front is discarded. Otherwise, the
d(s, P(t)) values of all individuals equal zero and the A, selection is used instead.

Algorithm 3. Reduce(Q)

1: {%,...,%,} < nondominated-sort(Q) /* all v fronts of Q */

2:if v> 1 then

3: r— argmax, [d(s, Q)] /* s € R, with highest d(s, Q) */

4: else

50 reargmingy, [4y (s, #1)] [*s € R, with lowest Ay (s, %) */
6: end if

7: return (Q\{r}) /* eliminate detected element */

One motivation for developing such a measure is the smaller runtime complexity compared to the hyper-
volume measure. Moreover, the motivation was to achieve a different ranking of dominated solutions in order
to emphasise on sparsely filled regions of the solution space. Here, individuals are kept for proceeding gener-
ations to fill gaps in the Pareto front approximation. The contributing hypervolume is applied to distribute
solutions well on the front they are lying on. Though the final purpose is to distribute solutions well on the
first non-dominated front (#,), this is not an end in itself on the other fronts. The d(s, P(¢)) measure favours
solutions located in those areas, where the better fronts are sparsely populated. The idea is that emanating
offspring solutions may rise in rank to better fronts and fill those vacancies. In areas where the non-dominated
front is densely populated, it is of no use to keep dominated individuals.

The measure is visualised by means of an example in Fig. 1. The contributing hypervolume measure favours
yg over yo but the d(s, P(1)) measure favours yg since there is only one dominating point. Solution yg is obvi-
ously much more interesting because of the big vacancy between ys and y¢ on the first front.

The number of dominating points can be calculated efficiently: the selection candidates are compared with
all solutions to check the dominance. This is possible in time O(mu?), with m denoting the number of objec-
tives and pu the population size. The expected runtime complexity is lower than the one of the basic SMS-
EMOA. The worst case complexity of the SMS-EMOA is the same, because the population may consist of
non-dominated solutions only. In this case, the d(s, P(f)) selection scheme is never applied. The average case
complexity is assumed to be better.

2 o0 0o
=@ @ 1. front Ry

O 2. front Ry

oy10

eY6

f1

Fig. 1. The hypervolume dominated by front %2, = {y,...,¥,,} is light-coloured and the contributions 4 (ys, #>) and Ay (y,, #,) are
visualised by the attached dark rectangles. The hatched areas correspond to the regions containing points that dominate yg or yo,
respectively. Here, d(ys, P(t)) =4 and d(yo, P(t)) =1, and Ay (yg, #2) > Ay (Yo, #2).
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2.3. Calculation of contributing hypervolume A

The best known algorithms calculate the hypervolume in a runtime, that is polynomial in the number of
points, but grows exponentially with the number of objectives. An overview of such algorithms is given next.
Additionally, dedicated algorithms to directly calculate all values of 44 at once in case of two and three objec-
tives are presented. These algorithms are significantly faster than repetitive calls of procedures to compute the
hypervolume as a whole.

In case of two objectives, we take the points of the worst-ranked non-dominated front and sort them in
ascending order according to the values of the first objective function /1. We get a sequence that is additionally
sorted in descending order concerning the £, values, because the points are mutually non-dominated. Given a
sorted front #, = {s1,...,8,}, 4+ is calculated as follows (i =2,...,[%,| — 1):

A(/(S,, ) (fl s1+1 fl S,)) (./‘2 Si— 1 f2 S,)) (6)

A fast algorithm for computing all contributions in a three objective space is presented in [16]. It has a run-
time of O(x°) and is based on a two-dimensional projection of the set of points. The f;—f> plane is divided into
a grid according to the coordinates of all u + 1 solution vectors and the reference point. For each grid cell ¢;
(i=1,.,ut1,j=1,.., u+t1), the u+ 1 values of f3 are computed at the corner point of the cell, which
dominates it in the fi—> plane. Among these values, the best value /;(c;;) and second best value /,(c;;) are deter-
mined. Given this information, which can be stored in two matrices of dimension (u + 1) X (i + 1), the exclu-
sive contribution of the ith solution vector (i =1,..., u+ 1) can be calculted as follows. For any grid cell ¢;
with /;(c;;) determined by the ith solution, we determine the volume v;; as the product of the surface area of ¢;
and the difference |hi(c;) — ha(cyy)|. Accumulating all these values of v; yields to the exclusive contribution of
the ith solution to the dominated hypervolume. The runtime is O(x*) because the number of cells is quandratic
and the calculations for each cell value are done in linear time. It is likely possible to further tune this algo-
rithm, i.e. by using incremental updates. However, for the computations performed in this paper the algorithm
performed reasonably fast. Another potential advantage is that the algorithm is non-recursive and uses simple
data structures. Thus it is relatively easy to implement/debug.

An algorithm that computes the whole hypervolume of a set of points is the LebMeasure algorithms by
Fleischer [5]. While [17] recently showed, that the runtime complexity is exponential in the number of objec-
tives in the worst case, contrary to the runtime complexity mistakenly stated in [5].

The HSO algorithm (Hypervolume by Slicing Objectives) described by Knowles [18] and Zitzler [19] is
exponential in the number of objectives as well. It is easier to implement, uses simpler data structures, and
needs less space. Recently While et al. [20] presented heuristics for accelerating HSO. For a set of / points,
HSO processes objectives one after the other and thereby divides the problem into / sets with a dimension
reduced by one in each iteration. The runtime differs with the order in which the objectives are processed.
The heuristics are applied as a pre-processing of HSO and calculate a promising order of objectives which reli-
ably avoids the worst possible case (but not reliably the worst case complexity) of HSO. While et al. [20] dem-
onstrated for some DTLZ functions the significant runtime reduction of 25-98% compared to the basic HSO.

2.4. Comparison to other EMOA

2.4.1. ESP

Huband et al. [12] incorporated an approximation of the hypervolume contribution into a selection oper-
ator resembling SPEA2 [21], replacing the common nearest neighbour criterion. They involved the “product of
the one-dimensional lengths to the next worse objective function value in the front for each objective” [12] as
selection criterion in case of equal fitness values. In the two-objective case, this exactly corresponds to the &
metric contribution (cf. Eq. (6)). In case of more than two objectives, this procedure provides only a lower
bound of the hypervolume value. The great advantage is the reduced runtime of O(k) with k being the number
of solutions on the front. The selection is performed using a (¢ + A)-ES selection scheme, setting u = 4 = 100.
Selection with equal numbers of parents and offsprings is very common in evolutionary multiobjective opti-
misation; though evidence for the advantage of this setting is missing up to now. As variation operator,
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the ESP algorithm employs usual operators from evolution strategies coupled with a mutation probability p.
Huband et al. choose p = 1/n as the probability to apply mutation for each decision variable.

ESP has been compared to several well-known EMOA like NSGA-II and SPEA?2 on a set of test functions
(ZDT1 to ZDT4 and ZDT6 [22]). In [12], the authors account the probabilistic mutation operator to be
responsible for the obtained quality of ESP.

2.4.2. IBEA

The indicator-based EA (IBEA), proposed by Zitzler and Kiinzli [13], is a general framework to incorpo-
rate quality indicators in EMOA. Next to a hypervolume based indicator, they also incorporated a binary
additive e-indicator. The fitness of a solution is based on the sum of the indicator values resulting from pair-
wise comparisons to all other solutions.

They utilised ordinary EMOA variation operators for different test functions, i.e. SBX recombination and
polynomial mutation on the real valued test functions under investigation (ZDT6, KUR, DTLZ2 and
DTLZ6). Again, a (u + p) selection scheme and a specially scaled value of the objective and indicator values
were incorporated in the improved adaptive IBEA. Both proposed variants yielded results “significantly better
than SPEA2 and NSGA-II with respect to the performance indicators™ [13].

2.4.3. The AA, .40 SCheme

The SMS-EMOA presented here nearly fits into the generic algorithm scheme 44 cquce presented by Know-
les and Corne [8] within the context of archiving strategies. The archiving strategy called 4A4g uses the con-
tributing hypervolume of the non-dominated points to determine the worst solution. Knowles and Corne
showed that the 44 g strategy converges to a subset of the true Pareto front. Provided that the population size
in the SMS-EMOA equals the archive size in A4 and only non-dominated solutions are concerned, the A4g
strategy is equivalent to our selection method. If dominated solutions are considered as well, the SMS-EMOA
population contains even more solutions than the 4A4g archive. Thus, the proof of convergence holds for
SMS-EMOA as well.

2.4.4. NSGA-1I

The NSGA-II by Deb et al. [14]is an improved version of the preceding NSGA. It features non-dominated-
sorting and a (u + p) selection scheme. The secondary ranking criterion for solutions on the same front is
called crowding distance. Its task corresponds to 4, in the SMS-EMOA. For a solution, the crowding dis-
tance is defined as the sum of the side lengths of the cuboid through the neighbouring solutions on the front.
For extremal solutions it is defined as infinity. The crowding distance value of a solution depends on its neigh-
bours and not directly on the position of the point itself, in contrast to the 4, measure.

The crowding distance is meant to distribute solutions uniformly on the fronts. In contrast to this, the
hypervolume measure is meant to distribute them in a way that approximately maximises the covered hyper-
volume. This indicates that good compromise solutions, which are located in parts of the front with high cur-
vature, are valued higher in SMS-EMOA than in NSGA-II.

3. Studies on artificial testfunctions
3.1. Distribution of solutions

A study was performed to get an impression of how the SMS-EMOA distributes solutions on Pareto fronts
of different curvature, e.g. convex, concave and linear Pareto fronts. We conducted a study on simple two-

objective test functions with a high dimensional decision space. The following family of generic functions,
named EBN, is devised:

filx) = (ZII) SRS (ixi—1|> w xel, )
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with n being the number of decision variables. The curvature is adjusted by the parameter y:y =1 leads to a
linear Pareto front, while y > 1 yields convex fronts and y <1 concave ones. With y; := fi(x) and y, := f5(x)
the precise Pareto fronts are analytically given by

1/9)\7
ya= (=)

All points in [0, 1]" are Pareto-optimal solutions [23].

Fig. 2 shows that the solutions are not uniformly distributed on the Pareto front, but distributed in a way
that maximises the covered hypervolume. The results demonstrate that the SMS-EMOA favours solutions in
regions where the Pareto front has knee-points and captures the regions with fair trade-offs between different
objectives. The regions with unbalanced trade-offs, located on the flanks of the Pareto front, are covered with
less density, although extremal solutions are maintained. On the linear Pareto front, the points get uniformly
distributed. In case of a concave Pareto front the regions with fair trade-offs are emphasised. These are located
near the angular point of the Pareto front. This serves the practitioner who is mainly interested in a limited
number of solutions on the Pareto front to get an overview of possible compromise solutions.

(8)

3.2. Settings for benchmarks

The SMS-EMOA was tested on several test problems from literature. We aimed at comparability to fre-
quently cited papers of Deb et al. presenting the e-MOEA approach [9,10]. Therefore, we also invoked the
same variation operators, namely SBX recombination and polynomial mutation with the parametrisation
given in [9,10]. The test problems named ZDTI1 to ZDT4 and ZDT6 from [10,22] have been considered
and are presented in Section 3.3, as well as the functions DTLZ1 to DTLZ4 [24] (see Section 3.4). This
way, we compared our SMS-EMOA to NSGA-II, C-NSGA-II, SPEA2, and e-MOEA.

The same parameter settings as in the benchmark from Deb et al. are invoked [9,10]. 20,000 function eval-
uations are calculated for the ZDT functions and 30,000 on all DTLZ functions except for DTLZ3, where
100,000 function evaluations are used. The population size is set to 100 for all functions, unlike in [10] where
a size of 200 individuals was applied for DTLZ3. For DTLZ4, ten runs are executed and five for all other
DTLZ and ZDT functions. Like in [9], only ‘successful’ runs are used to calculated the metric values. A
run is termed successful, if the solution set is distributed over the whole true Pareto front. The quality of
the algorithms is compared considering the % metric and another performance measure, the convergence met-
ric like in [9,10]. For every point in the solution set, the euclidean distance to the nearest point on the Pareto
front is measured in the solution space. The convergence metric is the arithmetic mean of these distances. It is
only applicable if the Pareto front is known a priori, as it is the case for many benchmark problems. The con-

1 L] T T T T
° e, 7=05 =
T e T=1"¢
0.8 [ .. . =20
06} ° e, 1
f2 DD .'. .-.
0.4 & DDD * . '. i
0.2 f °o_ ‘. . -
0 ©%00 0,0 o L . o, a *
0 0.2 0.4 0.6 0.8 1

Fig. 2. This study visualises results on the EBN problem family with Pareto fronts of different curvature computed by SMS-EMOA for a
20-dimensional decision space.
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Table 1
Results of several EMOA on functions ZDT1 to ZDT4 and ZDT6
Algorithm Convergence measure & metric
Average Standard deviation r Average Standard deviation r
ZDT1 NSGA-II 0.00054898 6.62e—05 4 0.8701 3.85¢e—04 6
C-NSGA-II 0.00061173 7.86e—05 5 0.8713 2.25¢—04 3
SPEA2 0.00100589 12.06e—05 6 0.8708 1.86e—04 4
e-MOEA 0.00039545 1.22e—05 1 0.8702 8.25¢—05 5
SMS-EMOA 0.00044394 2.88e—05 2 0.8721 2.26e—05 1
SMS-EMOA dp 0.00044872 4.35e—05 3 0.8721 1.59e—05 1
ZDT2 NSGA-II 0.00037851 1.88e—05 1 0.5372 3.01e—04 6
C-NSGA-II 0.00040011 1.91e—05 2 0.5374 4.42e—04 4
SPEA2 0.00082852 11.38e—05 6 0.5374 2.61e—04 4
e-MOEA 0.00046448 2.47e-05 5 0.5383 6.39¢e—05 3
SMS-EMOA 0.00041004 2.34e—05 3 0.5388 3.60e—05 1
SMS-EMOA dp 0.00041923 2.94e—-05 4 0.5388 1.77e—05 1
ZDT3 NSGA-II 0.00232321 13.95e—05 4 1.3285 1.72e—04 4
C-NSGA-II 0.00239445 12.30e—05 5 1.3277 9.82e—04 6
SPEA2 0.00260542 15.46e—05 6 1.3276 2.54e—04 5
e-MOEA 0.00175135 7.45¢—05 3 1.3287 1.31e—04 3
SMS-EMOA 0.00057233 5.81e—05 2 1.3295 2.11e—05 1
SMS-EMOA dp 0.00053864 3.27e—05 1 1.3295 2.33e—05 1
ZDT4 NSGA-II 0.00639002 0.0043 5 0.8613 0.00640 3
C-NSGA-II 0.00618386 0.0744 4 0.8558 0.00301 5
SPEA2 0.00769278 0.0043 6 0.8609 0.00536 4
e-MOEA 0.00259063 0.0006 2 0.8509 0.01537 6
SMS-EMOA 0.00251878 0.0014 1 0.8677 0.00258 1
SMS-EMOA dp 0.00289158 0.0019 3 0.8660 0.00324 2
ZDT6 NSGA-II 0.07896111 0.0067 5 0.3959 0.00894 6
C-NSGA-II 0.07940667 0.0110 6 0.3990 0.01154 5
SPEA2 0.00573584 0.0009 1 0.4968 0.00117 1
e-MOEA 0.06792800 0.0118 4 0.4112 0.01573 4
SMS-EMOA 0.05043192 0.0217 2 0.4354 0.02957 2
SMS-EMOA dp 0.06569538 0.0106 3 0.4148 0.01414 3

vergence metric does only account for the precision of the approximation to the Pareto front but not for the
distribution of points. Thus, it is recommended to use it in combination with other measures [1].

For a clear overview, the best results for the % metric and the convergence achieved in [10,9] have been
copied to Tables 1 and 2.

3.3. Two-dimensional functions (ZDTI to ZDT4 and ZDT6)

The following results are depicted in Table 1. The results of the SMS-EMOA with the modified selection
operator using the number of dominating points (cf. Section 2.2) are given in the lines named ‘SMS-EMOA
dp’. The results of the two SMS-EMOA variants are very similar and they often share the same rank. This is a
very positive result since the quality of the SMS-EMOA is maintained though algorithmic complexity and run-
time have been reduced. In the following, we start addressing the achievements for each test functions sepa-
rately, but do not further distinguish the results for the SMS-EMOA variants.

ZDTI1 has a smooth convex Pareto front where the SMS-EMOA is ranked best on the . metric and near to
the best concerning the convergence measure. ZDT4 provides multiple parallel local fronts and the Pareto
front is equivalent to that of ZDT1. On the basis of the given values from [9,10], we assume that all algorithms
jumped across the second best front with most solutions and aimed at the best front, like SMS-EMOA. The
worse ranked values of the other algorithms seem to stem from disadvantageous distributions. ZDT2 has a
smooth concave front and the SMS-EMOA covers most hypervolume. ZDT3 has a discontinuous Pareto
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Table 2
SMS-EMOA and best results from [9] of other EMOA
Algorithm Convergence measure & metric
Average Standard deviation Average Standard deviation
DTLZI SPEA2 0.0033377 3.54e—02 0.315981 6.98e—04
e-MOEA 0.00245 9.52e—05 0.298487 NC
SMS-EMOA 0.0029175 1.72e—04 0.316930 5.30e—05
SMS-EMOA dp 0.0028909 1.06e—04 0.316936 8.38¢—05
DTLZ2 C-NSGA-1I 0.00986 8.8e—04 NC NC
SMS-EMOA 0.0063652 3.20e—04 0.757911 4.49¢—05
SMS-EMOA dp 0.0065383 5.12e—04 0.757994 4.74e—05
DTLZ3 e-MOEA 0.0122290 2.23e—03 NC NC
SMS-EMOA 0.0071626 5.94e—04 0.755294 2.22e—03
SMS-EMOA dp 0.0069858 4.28e—04 0.755443 7.9e—04
DTLZ4 e-MOEA (6) 0.0097755 2.0e—04 NC NC
SMS-EMOA (4) 0.0065006 3.39¢e—04 0.757949 8.65¢—05
SMS-EMOA dp (5) 0.0065193 4.42¢e—04 0.757967 3.87e—05

front that consists of five slightly convex parts. Here, the SMS-EMOA is a little bit better concerning the .
metric than the second ranked e-MOEA and significantly better with respect to convergence. ZDT6 has a con-
cave Pareto front that is equivalent to that of ZDT2, except for the differences that the front is truncated to a
smaller range and that points are non-uniformly spaced. Here, the SMS-EMOA is ranked second on both
measures, outperformed by SPEA2, which in contrast shows apparently bad results on the other more simple
problems.

The SMS-EMOA is ranked best concerning the % metric in all functions except for ZDT6. Concerning the
convergence measure, it has two first ranks, two second ranks and one third rank. According to the sum of
ranks of the two measures on each function, one can state that the SMS-EMOA provides best results on all
considered functions, except for ZDT6, where it is outperformed by SPEA2. Comparing the sum of the
achieved ranks of each measure shows that our algorithm obtains best results concerning both the convergence
measure (with 9) and the .% metric (with 6). In order to test the significance of the results a Student z-test has
been applied. The results of the SMS-EMOA were tested for significance to all strategies that performed worse.
The results with respect to the . metric are significant with a significance level of more than 90%. Except for the
ZDT6 test problem, even a higher significance level of 95% holds. Also for the convergence measure, the SMS-
EMOA is better than the next best strategy with a significance level of more than 90%, except for ZDT4, where
the comparison to CNSGA-2 and e-EMOA does not lead to a sufficient significance level.

3.4. Three-dimensional functions (DTLZI to DTLZ4)

The results for the DTLZ functions are presented in Table 2. For easier comparison, the best values of
those published in [9] are copied into the table. The abbreviation ‘NC’ stands for ‘not computed’, indicating
missing values in the literature [9].

The results indicate that both SMS-EMOA variants clearly outperform the aforementioned EMOA con-
cerning the % metric value. Nearly the same holds for the convergence, where only the e-MOEA applied
to DTLZL1 is better. Just like on the ZDT functions, the comparison of the SMS-EMOA variants shows no
significant differences. This confirms that the hypervolume-based selection is successful within different
frameworks.

The SMS-EMOA solutions for functions DTLZ1 and DTLZ?2 are visualised in Fig. 3. The median run con-
cerning the .% metric values is shown, respectively. As there are no observably differences between the selection
variants, only results received with the basic SMS-EMOA are displayed.

The Pareto front of DTLZ]1 is a beveled, triangular plane in the first quadrant. The solutions of the SMS-
EMOA variants lay exactly on this plane. They are distributed uniformly and extremal solutions at the edges
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f3

Fig. 3. Solutions of SMS-EMOA for DTLZI1 (top) and DTLZ2 (bottom). The lattice adumbrates the Pareto front, respectively.

of the plane are contained (cf. Fig. 3). The functions DTLZ2 to DTLZ4 share the same Pareto front, which is
the eighth of the unit sphere, bounded to the first quadrant. There are no major differences between the results
of the SMS-EMOA variants, again. Fig. 3 shows that the solutions for DTLZ2 are not equally distributed
over the whole Pareto front. An adequate amount of boundary solutions are positioned along the eighth
sphere. The remaining solutions are uniformly distributed over the inner part of the sphere surface, leaving
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an obvious gap to the boundary solutions. The function DTLZ3 has several local fronts parallel to the global
one. All runs of the SMS-EMOA variants reached the global Pareto front and their convergence values are
substantially better than the best EMOA studied in previous work (cf. Table 2). The distribution of solutions
corresponds to the one on DTLZ2. The difficulty for function DTLZ4 is that the first two object variables are
raised to the power of 100. Hence, there is a bias towards the special solutions resulting in sets located solely in
the fi—f>-plane or the f—f5-plane. Just like in [10], only the successful runs are considered for the metric values
and their number out of 10 performed runs is given in brackets. The results of the successful runs are similar to
those of the solutions of DTLZ2 and DTLZ3.

On almost all DTLZ functions the obtained results for the convergence metric and & metric are signifi-
cantly better for the SMS-EMOA than for the other approaches (with a significance level of 99% using a Stu-
dent r-test). Only on DTLZI1, the significance of the better . metric values is not given and the e-MOEA
achieves better convergence values than the SMS-EMOA.

In conjunction, concerning this bundle of test problems, the SMS-EMOA can be regarded as the best evo-
lutionary multiobjective algorithm. The outstanding performance concerning the & metric is a very encour-
aging result even though good results seem to be natural because of the use of the & metric as selection
criterion and quality measure. One should admit that our approach is a rather simple one with only one pop-
ulation and only a few parameters. It is steady-state, resulting in a low selection pressure per generation. Nei-
ther there are any special variation operators fitted to the selection strategy, nor it is tuned for performance in
any way.

The results in the convergence measure are even more surprising. Especially on the function that are sup-
posed to be more difficult, the SMS-EMOA achieves very good results. A possible explanation might be that a
population of well-distributed points is able to sample individuals with larger improvement. Further investi-
gations are required to clarify this topic.

4. Application to airfoil design optimisation

Airfoil design applications are frequently addressed multiobjective real-world problems. The work on these
applications is pushed by acronautic industry because new solutions promise huge potential savings as well as
better and more secure flight characteristics. Moreover, research in aeronautics receives governmental support
in order to push up-to-date research in the related countries.

The multiobjective point of view is introduced by contradicting demands made to airfoils. On the one hand,
it should provide a maximum lift to ensure save and stable flight qualities and a low energy consumption dur-
ing the starting phase. On the other hand, a minimum drag is wanted during the cruising flight allowing for
minimal energy consumption. Many more qualities influence the complex interplay of parameters to ensure
best flight characteristics.

In this paper, we exemplarily deal with two airfoil design test cases. A computational fluid dynamics (CFD)
tool based on the solutions of Navier—Stokes equations computes the properties of the airfoils proposed by the
optimisation technique. The parameterisation of the airfoils is done using Bezier-splines. One computation of
an objective function value by time consuming CFD tools typically takes several minutes or more. Hence, only
a limited number of evaluations can be afforded. We allow 1000 evaluations to stay comparable to previous
studies on these test problems.

An airfoil redesign test case is the application investigated firstly. The two objectives defined are the differ-
ences in pressure distribution between target airfoils that are nearly optimal for given flow conditions and the

Table 3
Design conditions for the NACA redesign test case and the RAE drag minimisation test case

NACA RAE

Take-off Cruise Cruise Off-design 1 Off-design 2
Mach no. 0.20 0.77 0.734 0.754 0.680
Reynolds no. 5% 10° 107 6.5x10° 6.2x10° 5.7x10°
Angle of attack 10.8 1.0 2.8 2.8 1.8
Transition 3% 3% 3% 3% 11%

Please cite this article as: Nicola Beume et al., SMS-EMOA: Multiobjective selection ..., European Journal of Opera-
tional Research (2006), doi:10.1016/j.€jor.2006.08.008




N. Beume et al. | European Journal of Operational Research xxx (2006) xxx—xxx 13

airfoil proposed by the optimisation technique. The target airfoils are NACA 0012 and NACA 4412, why we
call this one the ‘NACA test case’. These flow conditions correspond to the take-off phase (high lift required)
and the cruising phase (low drag desired) during an aircraft flight and can be taken from the left hand part of
Table 3. For both flow conditions, the pressure distribution around the airfoil is calculated to derive the dif-
ferences to the two target airfoils. The integrated differences serve as fitness function values for the test case.
Due to the parameterisation in use, this test case features 18 degrees of freedom. A more detailed description
can be found in [7].

Within the second test case, three drag coefficients are to be minimised. The considered airfoil type is the
RAE 2822 airfoil, hence we will term the corresponding test case ‘RAE test case’. The different drag coeffi-
cients stem from three different flow conditions, each yielding different values for drag, lift and pitching
moment. The conditions can be taken from the right hand part of Table 3. The task is to minimise the drag
coefficients while not losing lift and keeping the pitching moment within a 2% range. Furthermore, geometrical
constraints have to be met for the thickness of the airfoil measured at two particular points: the maximum
thickness, its leading edge radius, and its trailing edge angle.

The geometrical information about a proposed airfoil can be received from the evaluation software just
after the airfoil shape is generated. The whole time-consuming procedure of grid generation, solving the flow
describing equations, and all post-processing tasks are not required to receive this information. Therefore, the
geometrical constraints are treated differently from the aerodynamic ones, which require the costly evaluation.
Variation operators are applied up to 1000 times unless a feasible solution subject to the geometrical con-
straints is obtained. This was done in order to achieve a higher ratio of feasible individuals. If no feasible solu-
tion is found after 1000 samples, the geometrical constraints will be treated like all other constraints. Due to
the parameterisation in use here, the RAE test case features six degrees of freedom.

4.1. Fitness function approximations

We use Kriging metamodels as described by Sacks et al. [25] as fitness function approximation tools (FFA)
to accelerate the SMS-EMOA in the presence of time consuming objective function evaluations. For a new
design point x € S, the Kriging metamodel allows for a prediction y;(x)(i € {1,...,m}) of the objective func-
tion value f{(x) from the set of previously evaluated (neighbouring) points stored in a database. Moreover, it
estimates the uncertainty of the prediction by means of a standard deviation §;(x).

In each generation, the metamodel-assisted SMS-EMOA [7] generates a surplus of individuals by mutations
of one chosen individual. From these individuals, we retrieve the most promising solution by means of the
metamodel. The chosen individual is then evaluated exactly using the precise evaluation function and consid-
ered in the (u + 1)-selection. An optimistic guess of the objective function values, y;(x) — 25;(x), (i = 1,...,m)
serves as a ranking criterion in the selection. The eligible individual is the one with the potentially highest value
of A4 [7] based on this optimistic guess. This selection criterion will be termed lower bound criterion in the
following. Another variant is to apply simply the predicted function value for estimating the contribution
in hypervolume, thereby neglecting its associated uncertainty measure. The latter strategy will be referred
to as mean value criterion.’

4.2. Results

The SMS-EMOA provided very good and encouraging results on the theoretical test problems as well as on
the design optimisation tasks. For the current study on airfoils, we collected five runs for each setting.

4.2.1. NACA results

Here, we considered SMS-EMOA without fitness function approximation (FFA) as well as the metamodel-
assisted SMS-EMOA with mean value and lower bound criterion as described above. The points of the sets
achieved using fitness function approximations are much better distributed than the ones obtained without.

2 Whenever the potential increase of the hypervolume measure is zero for all solutions, the algorithm performs a random choice.
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While runs without FFA are always biased towards one special region in the solution space, runs utilising
FFA do not show any special crowding. The solutions are more equally distributed all over the Pareto front,
with a desired higher density in regions with fair trade-offs as discussed above. The reason is the huge amount
of pre-evaluations that are used to find promising regions of the search space to locate individuals that are to
be evaluated exactly. Compared to the results with FFA, the runs without FFA do not seem to tap into their
full potential probably due to the fact of too few evaluations.

The resulting sets without FFA are the worst fronts of all presented ones except for one special region. In
the other regions, the SMS-EMOA with lower bound criterion seems to be better than the other algorithms
shortly followed by old results from NSGA-II with lower bound criterion. This is the best result from [26]
where different EMOA with and without FFA were studied. We therefore conclude, that the SMS-EMOA
with lower bound criterion yields better results than all EMOA tested in [26].

The SMS-EMOA with mean value criterion provided the worst results utilising FFA within this study.
The observation that the lower bound approximation technique offers better results than the mean value
approximation was made in [26] as well. This seems to be a general achievement that deserves further
attention.

4.2.2. RAFE results

The results presented here have been obtained by the basic SMS-EMOA and are compared with results
from an earlier publication, where a standard NSGA-II implementation was considered [27]. NSGA-II (with
SBX, polynomial mutation and a population size of 20 individuals) was the best algorithm in that publication.
We therefore conclude, that algorithms outperforming the NSGA-II results, provide better results than all
other algorithmic variants studied in [27].

The NSGA-II results (termed NSGA-II-SBP-20 in Fig. 4) are compared to results from SMS-EMOA fea-
turing the same variation operators and the same population size (SMS-SBP-20). Furthermore, SMS-EMOA
was tested with standard variation operators from evolution strategies.® This setting was tested with a popu-
lation size of 10 and 20 individuals (SMS-ES-10, SMS-ES-20), respectively.

Fig. 4 presents the non-dominated solutions from the union of all five received Pareto front approximations
per setting in the left hand part. The right hand part gives a median attainment surface consisting of all points
from a Pareto front approximation that are weakly dominated by at least two of the other Pareto front
approximations obtained with the same strategy.

In the top row of Fig. 4, the projections of the three-dimensional solutions into the f;—f>-plane are shown.
The results demonstrate, that the fitness function components f| and f> are highly correlated to each other.
Nearly all solutions appear to improve the baseline design (marked with a circle in the upper right corner).
Furthermore, solutions received from one strategy seem to dominate each other. This is an artifact caused
by the projection of the three-dimensional points. The high correlation between the fitness function compo-
nents f; and f> causes the projections in planes f—f; (middle row) and f>—f3 (bottom row) to look similar.
In the f1—f3-plane (middle row in Fig. 4), the variance in the results received from NSGA-II is lower than
the ones from SMS-EMOA. The results of SMS-EMOA show a wider distribution, which is strictly in accor-
dance with the intentions followed within the development of the algorithm.

From the right hand part of Fig. 4 (median attainment surface) it is hardly possible to distinguish the dif-
ferent results. The left hand part (the best obtained solutions) allow for a much better distinction. Here, a clear
best setting can be recognised, which is SMS-EMOA, featuring ES variation operators and a population size
of 10 individuals. The second best setting is the aformentioned one with a population size of 20 individuals.
Both other strategies can be ranked equally with an advantage for the SMS-EMOA variant in distribution of
solutions and quality in the third fitness function component (f3). The NSGA-II behaves a bit better with
respect to the other fitness function components (f; and f>). Note, that SMS-ES-10 is significantly better than
all other strategies with respect to all characteristics mentioned above.

3 We invoked one step size for each search direction, two randomly chosen parents to generate one offspring, intermediate
recombination on the step sizes, discrete recombination on the object parameters and a simple Gaussian mutation operator for step sizes
and object parameters according to Beyer and Schwefel [28].
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Fig. 4. Scatter plots from the RAE 2822 drag minimisation test case. The top row shows the projection of the three-dimensional Pareto
front approximations into the fi—f>-plane. The middle row shows the projection in the fi—f3-plane and the bottom row the projection in the
f>f3-plane. Four different settings are depicted: NSGA-II with SBX crossover, polynomial mutation and a population size of 20
individuals next to SMS-EMOA with the same parameterisation and the same variation operators as well as SMS-EMOA with standard
ES variation operators with a population size of 10 and 20 individuals. The left column provides the non-dominated solutions of the union
of solutions obtained in five runs per setting, while the right column presents the median attainment surfaces obtained.

The superiority of these results may be explained by the use of the ES variation operators in contrast to the
SBX crossover and the polynomial mutation as well as the smaller population size. In concordance with our
experience the SBX and polynomial mutation perform well on the theoretical test cases under investigation.
Real-world problems, however, seems to be better addressed with the ES variation operators. The benefit of
the smaller population size is detectable in all plots. This is probably due to the higher reproduction proba-
bility of each individual in smaller populations and the resulting higher selection pressure.

From an aerodynamic point of view, it is important to improve the baseline design with respect to all given
flight conditions; this means finding solutions dominating the baseline design. Only one such result has been
calculated until now, using the metamodel assisted NSGA-II as discussed in [27]. The ability to produce such
good results is due to the fact that a large number of pre-evaluations is comprised. Our results show that
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SMS-EMOA is always able to simultaneously improve all objectives of the baseline design. This can only be
explained by the favourable hypervolume selection incorporated in SMS-EMOA.

5. Summary and prospects

Multiple results on standard benchmark problems indicate that the SMS-EMOA is well-suited for Pareto
optimisation with two and three objectives. It clearly outperforms established techniques such as SPEA2, e-
MOEA, and NSGA-II, both in convergence and in %’ metric values received. The examples reveal that results
are well-distributed on the Pareto front. Boundaries of the Pareto front and regions around knee points are
favoured. A distinguishing feature of the SMS-EMOA is that it is well-suited for approximating Pareto sets by
a small number of individuals. This is often desired in practice.

A new selection criterion has been developed, which replaces the hypervolume-based selection in the pres-
ence of dominated solutions in the population. Using this new concept, the rating of a solution depends on the
number of solutions dominating it. Hence, it focuses the evolutionary search towards less explored regions
near the Pareto front. Both variants of the SMS-EMOA (the basic algorithm and the coupling with the num-
ber of dominated points criterion) led to better results than obtained by conventional strategies. This indicates
that the hypervolume selection mechanism, performs well, regardless of the particular details of the selection
scheme. This indicates a kind of robustness with regard to the special selection method chosen.

Besides the comparison on state-of-the-art benchmarks, the SMS-EMOA has been tested on challenging
real-world applications, namely the optimisation of airfoils within two or three different flight conditions.
Not only the distributions of solutions could be improved, but also solutions that clearly dominate the base-
line design have been found. Additionally, SMS-EMOA was coupled with a metamodelling tool. This tool
provides fast fitness function approximations to save costly exact evaluation in unfavourable regions. The
SMS-EMOA was the first algorithm which always produced solutions dominating the baseline one. Moreover
this algorithm produces the solutions robustly.

Future research should envisage the study of further algorithmic variants and a deepened analysis of strat-
egy parameters. By now, the computational effort to compute the % metric values is very high for more than
three objectives. Therefore, the SMS-EMOA is hardly applicable to higher dimensional problems that nor-
mally desire a large number of function evaluations. Nevertheless, many real-world applications allow only
a very limited number of evaluations due to costly simulations that govern the runtime of the optimisation
process. In these cases, the runtime of the operations performed within the EMOA can almost be neglected,
and the SMS-EMOA is certainly a well-suited optimiser.
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