裏面にも問題があります。忘れないように!!

問1 次の計算をしなさい。

(1)
$$(2 - 3i) + (5 + 7i)$$

(1)
$$(2-3i)+(5+7i)$$
 (2) $(-2+4i)-(3-2i)$

(3)
$$(1 + i)^2$$

(4)
$$i^4$$

(5)
$$(1 - \sqrt{3}i)(1 + \sqrt{3}i)$$
 (6) $\frac{-1+3i}{5-i}$

(6)
$$\frac{-1+3i}{5-i}$$

$$(7) \quad \sqrt{-2} \times \sqrt{-4}$$

(8)
$$\sqrt{-8} + \sqrt{-32}$$

問2 次の等式を満たす*x,y* の値を求めなさい。

(1)
$$(2x+1) + yi = 5 + 7i$$

(1)
$$(2x+1) + yi = 5+7i$$
 (2) $(x+2y) + (x-2y)i = 3+11i$

問3 次の方程式を解きなさい。

- (1) $x^2 + 5x + 3 = 0$ (2) $x^2 14x + 49 = 0$

- (3) $3x^2 x + 2 = 0$ (4) $6x^2 x 2 = 0$

問4 次の方程式の解を判別し、番号を1つ選びなさい。

異なる2つの実数解

重解

異なる2つの虚数解

解なし

- (1) $x^2 + 10x + 25 = 0$ (2) $3x^2 2x + 2 = 0$

答え_____

答え_____

- (3) $2x^2 + 5x + 1 = 0$
- $(4) \quad x^2 + 5 = 0$

答え

答え_____

問 5 $3x^2 - 5x - k = 0$ が虚数解をもつように定数 k の値の範囲を求めなさい。

問 6 $2x^2 + (k-2)x + k + 4 = 0$ が異なる 2 つの実数解をもつように 定数 k の値の範囲を求めなさい。

問 7 2 次方程式 $x^2 + 2x + 3 = 0$ の 2 つの解をa,b とする。 以下の各値を求めよ。

(1) a + b

(2) ab

(3) $a^2 + b^2$

(4) $a^3 + b^3$

問 8 2 次方程式 $x^2+2x+3=0$ の 2 つの解をa,b とする。 このとき、2 数 2a,2b を解とする 2 次方程式を求めなさい。 ただし、 x^2 の係数は、1 とする。

問1 次の計算をしなさい。

(1)
$$(2 - 3i) + (5 + 7i)$$

= $7 + 4i$

(2)
$$(-2+4i) - (3-2i)$$

= $-5+6i$

(3)
$$(1+i)^2$$

= $1 + 2i + i^2$
= $1 + 2i + (-1)$
= $2i$

$$(4) \quad i^{4}$$

$$= i^{2} \times i^{2}$$

$$= (-1) \times (-1)$$

$$= 1$$

(5)
$$(1 - \sqrt{3}i)(1 + \sqrt{3}i)$$

= $1 - 3i^2$
= $1 - 3 \times (-1)$
= 4

(6)
$$\frac{-1+3i}{5-i}$$

$$=\frac{(-1+3i)(5+i)}{(5-i)(5+i)}$$

$$=\frac{-5-i+15i+3i^2}{25-i^2}$$

$$=\frac{-8+14i}{26}=\frac{-4+7i}{13}$$

(7)
$$\sqrt{-2} \times \sqrt{-4}$$
$$= \sqrt{2}i \times \sqrt{4}i$$
$$= \sqrt{8} \times i^{2}$$
$$= 2\sqrt{2} \times (-1)$$
$$= -2\sqrt{2}$$

(8)
$$\sqrt{-8} + \sqrt{-32}$$
$$= 2\sqrt{2}i + 4\sqrt{2}i$$
$$= 6\sqrt{2}i$$

次の等式を満たす x,y の値を求めなさい。 問 2

(1)
$$(2x+1) + yi = 5 + 7i$$

(1)
$$(2x+1) + yi = 5+7i$$
 (2) $(x+2y) + (x-2y)i = 3+11i$

$$\begin{cases} 2x+1=5\\ y=7 \end{cases}$$

$$2x=4$$

$$x=2$$

$$\begin{cases} x+2y=3\\ x-2y=11 \end{cases}$$

$$2x=14 \rightarrow x=7$$

$$2y=3-7 \rightarrow y=-2$$

$$\begin{cases} x=7\\ y=-2 \end{cases}$$

問3 次の方程式を解きなさい。

(1)
$$x^2 + 5x + 3 = 0$$

$$x = \frac{-5 \pm \sqrt{25 - 4 \times 1 \times 3}}{2}$$

$$= \frac{-5 \pm \sqrt{25 - 12}}{2} = \frac{-5 \pm \sqrt{13}}{2}$$

$$= \frac{14 \pm \sqrt{196 - 4 \times 1 \times 49}}{2} = \frac{14 \pm \sqrt{196 - 196}}{2} = \frac{14}{2} = 7$$

(2)
$$x^2 - 14x + 49 = 0$$

$$x = \frac{14 \pm \sqrt{196 - 4 \times 1 \times 49}}{2}$$
$$= \frac{14 \pm \sqrt{196 - 196}}{2} = \frac{14}{2} = 7$$

(3)
$$3x^2 - x + 2 = 0$$

$$x = \frac{1 \pm \sqrt{1 - 4 \times 3 \times 2}}{2 \times 3}$$
$$= \frac{1 \pm \sqrt{1 - 24}}{6} = \frac{1 \pm \sqrt{23}i}{6}$$

(4)
$$6x^2 - x - 2 = 0$$

$$x = \frac{1 \pm \sqrt{1 - 4 \times 3 \times 2}}{2 \times 3}$$

$$= \frac{1 \pm \sqrt{1 - 24}}{6} = \frac{1 \pm \sqrt{23}i}{6}$$

$$x = \frac{1 \pm \sqrt{1 + 48}}{2 \times 6}$$

$$= \frac{1 \pm \sqrt{1 + 48}}{12} = \frac{1 \pm \sqrt{49}}{12}$$

$$= \frac{1 \pm 7}{12} = \frac{8}{12}, \frac{-6}{12} \Rightarrow 7, \quad x = \frac{2}{3}, -\frac{1}{2}$$

問4 次の方程式の解を判別し、番号を1つ選びなさい。

異なる2つの実数解

重解

異なる2つの虚数解

解なし

(1) $x^2 + 10x + 25 = 0$ (2) $3x^2 - 2x + 2 = 0$

 $D = 10^2 - 4 \times 1 \times 25$ $D = (-2)^2 - 4 \times 3 \times 2$

=100-100=0

=4-24=-20

答え

答え

(3) $2x^2 + 5x + 1 = 0$ (4) $x^2 + 5 = 0$

 $D = 5^2 - 4 \times 2 \times 1$ $D = 0^2 - 4 \times 1 \times 5$

=25-8=17 =0-20=-20

答え

答え

問 5 $3x^2 - 5x - k = 0$ が 虚数解をもつように 定数 k の値の範囲を

$$D = (-5)^2 - 4 \times 3 \times (-k) = 25 + 12k$$

25 + 12k < 0

12k < -25

求めなさい。

 $k < -\frac{25}{12}$

問 6 $2x^2 + (k-2)x + k + 4 = 0$ が異なる 2 つの実数解をもつように

定数 k の値の範囲を求めなさい。

$$D = (k-2)^{2} - 4 \times 2 \times (k+4) = k^{2} - 4k + 4 - 8k - 32$$

 $=k^2-12k-28$

$$k^2 - 12k - 28 > 0$$

$$(k+2)(k-14) > 0$$

k < -2,14 < k

問 7 2 次方程式 $x^2 + 2x + 3 = 0$ の 2 つの解をa, b とする。 以下の各値を求めよ。

(1)
$$a + b$$

$$-\frac{2}{1} = -2$$

$$\frac{3}{1} = 3$$

(3)
$$a^2 + b^2$$

$$a^{2} + b^{2} = (a + b)^{2} - 2ab$$
 $a^{3} + b^{3} = (a + b)^{3} - 3ab(a + b)$

$$= (-2)^2 - 2 \times 3 = 4 - 6 = -2$$

(4)
$$a^3 + b^3$$

$$a^{2} + b^{2} = (a + b)^{2} - 2ab$$
 $a^{3} + b^{3} = (a + b)^{3} - 3ab(a + b)$
= $(-2)^{2} - 2 \times 3 = 4 - 6 = -2$ = $(-2)^{3} - 3 \times 3 \times (-2) = -8 + 18 = 10$

間 8 2 次方程式 $x^2 + 2x + 3 = 0$ の 2 つの解をa,b とする。

このとき、2 数 2a,2b を解とする 2 次方程式を求めなさい。

ただし、 x^2 の係数は、1とする。

$$a + b = -2, ab = 3$$

$$2a + 2b = 2(a + b) = 2 \times (-2) = -4$$

$$2a \times 2b = 4ab = 4 \times 3 = 12$$

よって、
$$x^2 + 4x + 12 = 0$$