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Modular elliptic curves
and
Fermat’s Last Theorem
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Cubum autem in duos cubos, aut quadratoquadratum in duos quadra-
toquadratos, et generaliter nullam in infinitum ultra quadratum
potestatem in duos ejusdem mominis fas est dividere: cujus rei
demonstrationem mirabilem sane detexi. Hanc marginis exiguitas
non caperet. :
Pierre de Fermat

Introduction

An elliptic curve over Q is said to be modular if it has a finite covering by
a modular curve of the form Xo(N). Any such elliptic curve has the property
that its Hasse-Weil zeta function has an analytic continuation and satisfies a
functional equation of the standard type. If an elliptic curve over Q with a
given j-invariant is modular then it is easy.to see that all elliptic curves with
the same j-invariant are modular (in which case we say that the j-invariant
is modular). A well-known conjecture which grew out of the work of Shimura
and Taniyama in the 1950’s and 1960’s asserts that every elliptic curve over Q
is modular. However, it only became widely known through its publication in a
paper of Weil in 1967 [We| (as an exercise for the interested reader!), in which,
moreover, Weil gave conceptual evidence for the conjecture. Although it had
been numerically verified in many cases, prior to the results described in this
paper it had only been known that finitely many j-invariants were modular.

In 1985 Frey made the remarkable observation that this conjecture should
imply Fermat’s Last Theorem. The precise mechanism relating the two was
formulated by Serre as the e-conjecture and this was then proved by Ribet in
the summer of 1986. Ribet’s result only requires one to prove the conjecture
for semistable elliptic curves in order to deduce Fermat’s Last Theorem.

*The work on this paper was.supported by an NSF grant.
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Our approach to the study of elliptic curves is via their associated Galois

representations. Suppose that p, is the representation of Gal(Q/Q) on the
p-division points of an elliptic curve over Q, and suppose for the moment that
-p3 is irreducible. The choice of 3 is critical because a crucial theorem of Lang-
lands and Tunnell shows that if p3 is irreducible then it is also modular. We
then proceed by showing that under the hypothesis that ps is semistable at 3,
together with some milder restrictions on the ramification of ps at the other
primes, every suitable lifting of p3 is modular. To do this we link the problem,
via some novel arguments from commutative algebra, to a class number prob-
lem of a well-known type. This we then solve with the help of the paper [TW].
This suffices to prove the modularity of E as it is known that E is modular if
and only if the associated 3-adic representation is modular.

The key development in the proof is a new and surprising link between two
strong but distinct traditions in number theory, the relationship between Galois
representations and modular forms on the one hand and the interpretation of
special values of L-functions on the other. The former tradition is of course .
more recent. Following the original results of Eichler and Shimura in the
1950’s and 1960’s the other main theorems were proved by Deligne, Serre and
Langlands in the period up to 1980. This included the construction of Galois
representations associated to modular forms, the refinements of Langlands and
Deligne (later completed by Carayol), and the crucial application by Langlands
of base change methods to give converse results in weight one. However with
the exception of the rather special weight one case, including the extension by
Tunnell of Langlands’ original theorem, there was no progress in the direction
of associating modular forms to Galois representations. From the mid 1980’s
the main impetus to the field was given by the conjectures of Serre which
elaborated on the e-conjecture alluded to before. Besides the work of Ribet and
others on this problem we draw on some of the more specialized developments
of the 1980’s, notably those of Hida and Mazur.

The second tradition goes back to the famous analytic class number for-
mula of Dirichlet, but owes its modern revival to the conjecture of Birch and
Swinnerton-Dyer. In practice however, it is the ideas of Iwasawa in this field on
which we attempt to draw, and which to a large extent we have to replace. The
principles of Galois cohomology, and in particular the fundamental theorems
of Poitou and Tate, also play an important role here.

The restriction that ps be irreducible at 3 is bypassed by means of an
intriguing argument with families of elliptic curves which share a common
ps. Using this, we complete the proof that all semistable elliptic curves are
modular. In particular, this finally yields a proof of Fermat’s Last Theorem. In
addition, this method seems well suited to establishing that all elliptic curves
over Q are modular and to generalization to other totally real number fields.

Now we present our methods and results in more detail.
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Let f be an eigenform associated to the congruence subgroup I'1(N) of
SL2(Z) of weight kK > 2 and character x. Thus if T}, is the Hecke operator
associated to an integer n there is an algebraic integer c(n, f) such that T,,f =
c(n, f)f for each n. We let K¢ be the number field generated over Q by the
{c(n, f)} together with the values of x and let Oy be its ring of integers.
For any prime A of Oy let Oy » be the completion of Oy at A. The following
theorem is due to Eichler and Shimura (for k¥ = 2) and Deligne (for k > 2).
The analogous result when k£ = 1 is a celebrated theorem of Serre and Deligne
but is more naturally stated in terms of complex representations. The image
in that case is finite and a converse is known in many cases.

THEOREM 0.1. For each prime p € Z and each prime X | p of Oy there
is a continuous representation

pra: Gal(Q/Q) — GL2(Of,5)

which is unramified outside the primes dividing Np and such that for all primes
q1 Np,

trace pf z(Frobq) = c(g, f),  det psr(Frobg) = x(q)¢d" .

We will be concerned with trying to prove results in the opposite direction,
that is to say, with establishing criteria under which a A-adic representation
arises in this way from a modular form. We have not found any advantage
in assuming that the representation is part of a compatible system of A-adic
representations except that the proof may be easier for some A than for others.

Assume

po : Gal(Q/Q) — GL2(F,)

is a continuous representation with values in the algebraic closure of a finite
field of characteristic p and that det pg is odd. We say that pp is modular
if po and pyy mod A are isomorphic over Fp for some f and A and some
embedding of Of/X in F,. Serre has conjectured that every irreducible pg of
odd determinant is modular. Very little is known about this conjecture except
when the image of pg in PGLy(F)) is dihedral, A4 or Ss. In the dihedral case
it is true and due (essentially) to Hecke, and in the A4 and Sy cases it is again
true and due primarily to Langlands, with one important case due to Tunnell
(see Theorem 5.1 for a statement). More precisely these theorems actually
associate a form of weight one to the corresponding complex representation
but the versions we need are straightforward deductions from the complex
case. Even in the reducible case not much is known about the problem in
the form we have described it, and in that case it should be observed that
one must also choose the lattice carefully as only the semisimplification of
Pfx = psamod ) is independent of the choice of lattice in K% A
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If O is the ring of integers of a local field (containing Qp) we will say that
p:Gal(Q/Q) — GLz(O) is a lifting of py if, for a specified embedding of the
residue field of O in Fp, p and pg are isomorphic over F . Our point of view
will be to assume that pg is modular and then to attempt to give conditions
under which a representation p lifting py comes from a modular form in the
sense that p ~ py 5 over Ky for some f, \. We will restrict our attention to
two cases:

(I) po is ordinary (at p) by which we mean that there is a one-dimensional
subspace of Ff,, stable under a decomposition group at p and such that
the action on the quotient space is unramified and distinct from the
action on the subspace.

(II) po is flat (at p), meaning that as a representation of a decomposition
group at p, po is equivalent to one that arises from a finite flat group
scheme over Z,, and det py restricted to an inertia group at p is the
cyclotomic character.

We say similarly that p is ordinary (at p) if, viewed as a representation to Q
there is a one-dimensional subspace of Q2 stable under a decomposition group
at p and such that the action on the quotient space is unramified.

Let € : Gal(Q/Q) — Z; denote the cyclotomic character. Conjectural
converses to Theorem 0.1 have been part of the folklore for many years but
have hitherto lacked any evidence. The critical idea that one might dispense
with compatible systems was already observed by Drinfeld in the function field
case [Dr]. The idea that one only needs to make a geometric condition on the
restriction to the decomposition group at p was first suggested by Fontaine and
Mazur. The following version is a natural extension of Serre’s conjecture which
is convenient for stating our results and is, in a slightly modified form, the one
proposed by Fontaine and Mazur. (In the form stated this incorporates Serre’s
conjecture. We could instead have made the hypothesis that pg is modular.)

CONJECTURE.  Suppose that p: Gal(Q/Q) — GL2(0) is an irreducible
lifting of po and that p is unramified outside of a finite set of primes. There
are two cases:

(1) Assume that po is ordinary. Then if p is ordinary and det p = e*1x for
some integer k > 2 and some x of finite order, p comes from a modular
form.

(ii) Assume that po is flat and that p is odd. Then if p restricted to a de-
composition group at p is equivalent to a representation on a p-divisible
group, again p comes from a modular form.



MODULAR ELLIPTIC CURVES AND FERMAT’'S LAST THEOREM 447

In case (ii) it is not hard to see that if the form exists it has to be of
weight 2; in (i) of course it would have weight k. One can of course enlarge
this conjecture in several ways, by weakening the conditions in (i) and (ii), by
considering other number fields in place of Q and by considering groups other
than GLs.

We prove two results concerning this conjecture. The first includes the
hypothesis that pg is modular. Here and for the rest of the paper we will
assume that p is an odd prime.

THEOREM 0.2. Suppose that po is irreducible and satisfies either (I) or
(II) above. Suppose also that pg is modular and that

(i) po is absolutely irreducible when restricted to Q (\/ (—1)1%l p).

(i) If ¢ = —1modp is ramified in po then either po|p, is reducible over
the algebraic closure where Dy is a decomposition group at q or pols, is
absolutely irreducible where I, is an inertia group at q.

Then any representation p as in the conjecture does indeed come from a mod-
ular form.

The only condition which really seems essential to our method is the re-
quirement that pg be modular.

The most interesting case at the moment is when p = 3 and pg can be de-
fined over F3. Then since PGL2(F3) ~ Sy every such representation is modular
by the theorem of Langlands and Tunnell mentioned above. In particular, ev-
ery representation into GLy(Z3) whose reduction satisfies the given conditions
is modular. We deduce:

THEOREM 0.3. Suppose that E is an elliptic curve defined over Q and
that po is the Galois action on the 3-division points. Suppose that E has the
following properties: ‘

(i) E has good or multiplicative reduction at 3.
(ii) po is absolutely irreducible when restricted to Q(\/—3).

Gy For any g = —Lwed? either aolp, is reducible over the algebraic closure
or po|1, s absolutely irreducible.

Then E is modular.

We should point out that while the properties of the zeta function follow
directly from Theorem 0.2 the stronger version that E is covered by Xo(N)



