物理学科で学ぶことはどんな ことに役立っているのか?

物理学科 三年 野上 康太 30期

物理学とは?

- 自然現象を解明 研究する学問
- 最終的な目的はミクロな世界からマクロ(全宇宙)までの現象を統一的に説明できる理論系を構築すること。

物理学科で学ぶことについて

物理学を学ぶ

- →物理学を生かそうと思う(実際の生活に)
- →違う学科になる

例えば 電気系学科や機械工学科など

逆に考えれば生活にかかわることの技術の基礎(理論的な)は物理学であるはず。

物理学科で学ぶことについてⅡ

- ・大学では 力学 物理数学 電磁気学 量子力学 熱・統計物理学 といった物理学の基礎の基礎を学ぶ。
- 大学で大事なのは物理学を学ぶ過程の中の 考え方や物の見方(自然現象などを論理的 に考えるなど)だと私は思う。(もちろん学ぶ 内容も大事)

※私は大学までで卒業し卒業後は就職希望

例えば何に役立つの?

日常生活のありとあらゆるとこに役立ってる (もともと自然現象も多いので)

- 電車
- 電気(発電)
- ・エアコン
- 太陽電池

電車について I

- ・電車の車輪は金属:鉄でできている その理由は・重量が大きい ・滑りやすい (固いので縮まず設置面積が少ない) ただし
- 急斜面など走行するならゴム (上記の理由より斜面を登れない)
- モノレールなどもゴム
- 車もゴム雨が降ると...

エアコンについて I ヒートポンプ

熱 (部屋)

个

高温ガス→→→→②凝縮器→→→→冷めた液体

1

 \downarrow

①圧縮機

暖房運転

③膨張弁

1

 \downarrow

冷めたガス←←←←④蒸発器←←←低温液体

1

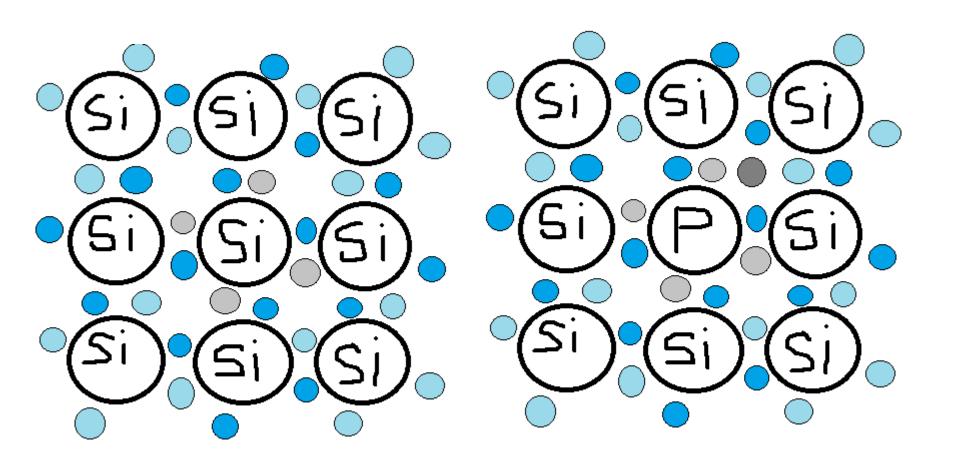
(霧状)

熱 (室外)

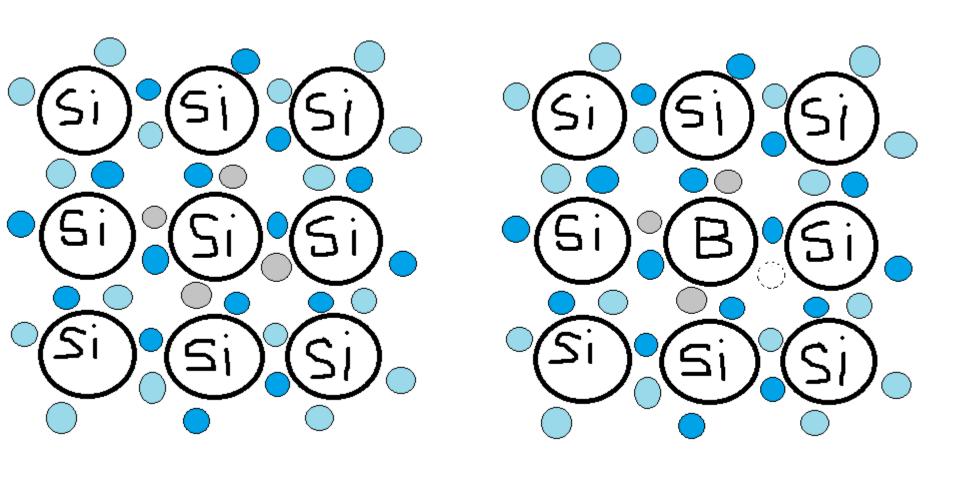
エアコンについてⅡ 冷媒

- CFC クロロフルオルカーボン 特定フロン 禁止
- HCFC ハイドロクロロフルオルカーボン代替フロン 次期に禁止
- HFC ハイドロフルオルカーボン 新冷媒 今はこれ(R32)
- HFCのR32はダイキンのCM中。塩素Clを含まずオゾン層を破壊しない
- 冷媒とはヒートポンプにおいて熱を移動させることのできる熱媒体
- 冷媒の一つフロンは常温で気体圧力をかけると液体 になり気体と液体を行き来して熱を運ぶ。

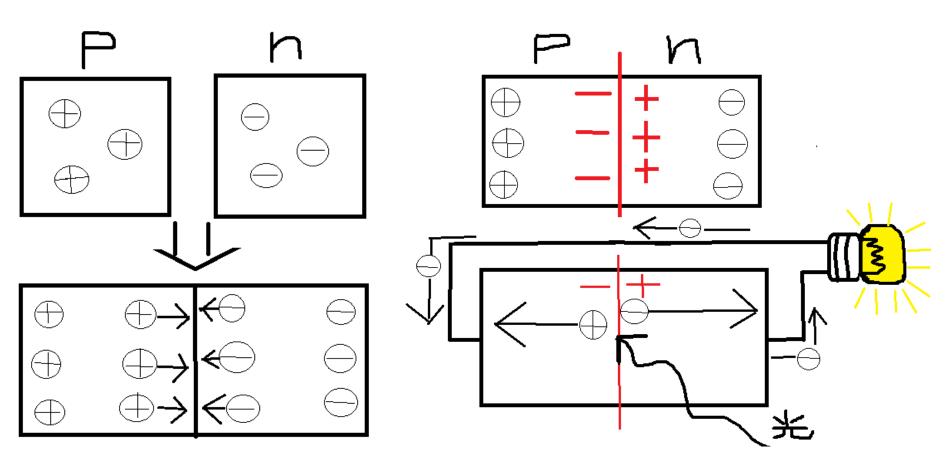
太陽電池についてI


- 真性半導体(i型半導体)
- p型半導体
- n型半導体
- pn接合
- pin接合
- 光電効果
- 空乏層
- 化合物半導体
- ・量子ドット太陽電池

元素表


		族																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	Н																	Не
	2	Li	Ве											В	С	N	0	F	Ne
	3	Na	Mg											ΑI	Si	Р	S	СІ	Ar
周期	4	к	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	5	Rb	Sr	Υ	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Хе
	6	Cs	Ba		Hf	Ta	W	Re	0s	Ir	Pt	Au	Hg	TI	Рb	Bi	Ро	At	Rn
	7	Fr	Ra		Rf	DЬ	Sg	Bh	Hs	Mt	Ds	Rg							

ランタノイド	La	Се	Pr	Nd	Ρm	Sm	Eu	Gd	ТЬ	Dy	Но	Er	Τm	Yb	Lu
アクチノイド	Ac	Th	Pa	כ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr


n型半導体

p型半導体

pn接合と太陽光発電の仕組み

• ただし直流のみで強い電場が必要

参考

- ・ 三基計装株式会社 冷凍サイクルとは?
- のりむら総合サービス エアコン冷媒ガスの種類
- でんしゃのしくみ
- 鉄道の車輪とレール
- エアコンの原理と仕組み
- やる夫で学ぶエアコンの仕組みと熱効率(1)(2)
- 解体新書