ƒŒƒxƒ‹1
[“x-[“x+[“x-[“x--‘¬“x+‘¬“x-‹@“®+
’âŽ~[“x+[“x-‘¬“x+‘¬“x-‹@“®+‹@“®-[“x+ ‘¬“x-‘¬“x+ ‹@“®-‹@“®+ [“x-
[“x+’âŽ~[“x+[“x++[“x-‘¬“x-‹@“®+‹@“®-
‘¬“x-’âŽ~[“x+‘¬“x+‘¬“x-‘¬“x--‹@“®+‹@“®-[“x+ ‘¬“x-
‹@“®-’âŽ~[“x+[“x-‘¬“x+‹@“®+‹@“®-‹@“®--
‹@“®+[“x-‘¬“x+‘¬“x-‹@“®+‹@“®++‹@“®-
‹@“®++[“x-‘¬“x-‹@“®+‹@“®++‹@“®+ [“x-
‹@“®+ [“x-’âŽ~[“x--‹@“®++‹@“®+ [“x-
‘¬“x+’âŽ~[“x+[“x-‘¬“x+‘¬“x++‘¬“x-‹@“®-
ƒV[ƒ‹ƒhMAX’âŽ~[“x+[“x-‘¬“x+‘¬“x-‹@“®+‹@“®-
‘¬“x++[“x-‘¬“x+‘¬“x++‹@“®-‘¬“x+ ‹@“®-
ƒV[ƒ‹ƒhOFF’âŽ~[“x+[“x-‘¬“x+‘¬“x-‹@“®+‹@“®-


ƒŒƒxƒ‹2
•‚ã„qös„q–³‰¹•‚ã–³‰¹ös
‘¬“x20«‘¬“x20«ƒV[ƒ‹ƒhOFFƒV[ƒ‹ƒhOFF
’âŽ~–³‰¹•‚ã
(?,?,?)
’Êí•‚ã
(0,-4,-1)
–³‰¹ös
(?,?,?)
’Êíös
(0,+3,0)
‘‘¬ŠJŽn
(0,0,+1)
Œ¸‘¬
(0,0,-2)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
[“x+
(0.+2,0)
[“x-
(0,-3,0)
‘¬“x+
(0,0,+2)
‘¬“x-
(0,0,-2)
‹@“®+
(+2,0,0)
‹@“®-
(-3,0,0)
[“x+ ‘¬“x-
(0,+1,-2)
‘¬“x+ ‹@“®-
(-2,0,+1)
‹@“®+ [“x-
(+1,-2,0)

’Êí•‚ã
(0,-4,-1)
’âŽ~–³‰¹•‚ã
(?,?,?)
ƒV[ƒ‹ƒhOFF?
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‹}‘¬•‚ã
(0,-6,-2)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
•‚ã„q
(0,-2,-2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
[“x-
(0,-3,0)
[“x--
(0,-5,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

’Êíös
(0,+3,0)
’âŽ~–³‰¹ös
(?,?,?)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‹}‘¬ös
(0,+5,+1)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
•‚ã„q
(0,-2,-2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‘匸‘¬
(+2,0,-6)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
[“x+
(0.+2,0)
[“x++
(0.+4,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‘‘¬ŠJŽn
(0,0,+1)
’âŽ~–³‰¹•‚ã
(?,?,?)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
–³‰¹ös
(?,?,?)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‘‘¬
(-1,0,+3)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
‘¬“x+
(0,0,+2)
‘¬“x++
(0,0,+4)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

Œ¸‘¬
(0,0,-2)
’âŽ~–³‰¹•‚ã
(?,?,?)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
–³‰¹ös
(?,?,?)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

Œ¸‘¬Œp‘±
(+1,0,-4)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‘匸‘¬
(+2,0,-6)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
‘¬“x-
(0,0,-3)
‘¬“x--
(0,0,-5)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

ös„q
(0,+2,+2)
’âŽ~–³‰¹•‚ã
(?,?,?)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
–³‰¹ös
(?,?,?)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

ù‰ñ
(+1,0,0)
’âŽ~–³‰¹•‚ã
(?,?,?)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
–³‰¹ös
(?,?,?)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‹}ù‰ñ
(+3,0,-1)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‚’¼ù‰ñ
(+6,0,-2)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
‹@“®+
(+2,0,0)
‹@“®++
(+4,0,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

ƒV[ƒ‹ƒhMAX’âŽ~–³‰¹•‚ã
(?,?,?)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
–³‰¹ös
(?,?,?)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
[“x+
(0.+2,0)
[“x-
(0,-3,0)
‘¬“x+
(0,0,+2)
‘¬“x-
(0,0,-2)
‹@“®+
(+2,0,0)
‹@“®-
(-3,0,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)
’Êí•‚ã
(0,-4,-1)
‹}‘¬•‚ã
(0,-6,-2)
ƒV[ƒ‹ƒhã¸
(+1,-8,-3)
’Êíös
(0,+3,0)
‹}‘¬ös
(0,+5,+1)
ƒV[ƒ‹ƒhƒ_ƒCƒu
(-1,+7,+3)
‘‘¬ŠJŽn
(0,0,+1)
‘‘¬
(-1,0,+3)
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ…
(-2,0,+6)
Œ¸‘¬
(0,0,-2)
Œ¸‘¬Œp‘±
(+1,0,-4)
‘匸‘¬
(+2,0,-6)
•‚ã„q
(0,-2,-2)
ös„q
(0,+2,+2)
ù‰ñ
(+1,0,0)
‹}ù‰ñ
(+3,0,-1)
‚’¼ù‰ñ
(+6,0,-2)
ƒoƒŒƒ‹ƒ[ƒ‹
(+3,+2,+2)
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ
(-4,-3,-3)
[“x+
(0.+2,0)
[“x-
(0,-3,0)
‘¬“x+
(0,0,+2)
‘¬“x-
(0,0,-2)
‹@“®+
(+2,0,0)
‹@“®-
(-3,0,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‘¬“x+
(0,0,+2)
[“x+
(0.+2,0)
[“x-
(0,-3,0)
‘¬“x+
(0,0,+2)
‘¬“x++
(0,0,+4)
‘¬“x-
(0,0,-2)
‹@“®-
(-3,0,0)

‘¬“x++
(0,0,+4)
[“x-
(0,-3,0)
‘¬“x+
(0,0,+2)
‘¬“x++
(0,0,+4)
‹@“®-
(-3,0,0)
‘¬“x+ ‹@“®-
(-2,0,+1)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‹@“®+
(+2,0,0)
’âŽ~[“x-
(0,-3,0)
‘¬“x+
(0,0,+2)
‘¬“x-
(0,0,-2)
‹@“®+
(+2,0,0)
‹@“®++
(+4,0,0)
‹@“®-
(-3,0,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‹@“®++
(+4,0,0)
[“x-
(0,-3,0)
‘¬“x-
(0,0,-2)
‹@“®+
(+2,0,0)
‹@“®++
(+4,0,0)
‹@“®+ [“x-
(+1,-2,0)

‹@“®-
(-3,0,0)
’âŽ~[“x+
(0.+2,0)
[“x-
(0,-3,0)
‘¬“x+
(0,0,+2)
‹@“®-
(-3,0,0)
‹@“®--
(-5,0,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

‹@“®--
(-5,0,0)
[“x+
(0.+2,0)
‘¬“x+
(0,0,+2)
‹@“®-
(-3,0,0)
‹@“®--
(-5,0,0)
‘¬“x+ ‹@“®-
(-2,0,+1)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

[“x+
(0.+2,0)
’âŽ~[“x+
(0.+2,0)
[“x++
(0.+4,0)
[“x-
(0,-3,0)
‘¬“x-
(0,0,-2)
‹@“®+
(+2,0,0)
‹@“®-
(-3,0,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

[“x++
(0.+4,0)
[“x+
(0.+2,0)
[“x++
(0.+4,0)
‘¬“x-
(0,0,-2)
‹@“®-
(-3,0,0)
[“x+ ‘¬“x-
(0,+1,-2)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

[“x-
(0,-3,0)
’âŽ~[“x+
(0.+2,0)
[“x-
(0,-3,0)
[“x--
(0,-5,0)
‘¬“x+
(0,0,+2)
‘¬“x-
(0,0,-2)
‹@“®+
(+2,0,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)

[“x--
(0,-5,0)
[“x-
(0,-3,0)
[“x--
(0,-5,0)
‘¬“x+
(0,0,+2)
‹@“®+
(+2,0,0)
‹@“®+ [“x-
(+1,-2,0)
ƒV[ƒ‹ƒhƒ^[ƒ“
(+5,0,-5)