平成 23 年度

高知大学医学部医学科 学士入学〈第2年次編入学〉 第1次選抜試験

総合問題 [B] 問題冊子

この表紙をよく読んでください。ただし、試験開始の合図があるまではこの冊子を開いて はいけません。

以下の**〈解答上の注意事項〉**をよく理解した上で解答してください。

<解答上の注意事項>

- 1. 受験票を机の上に置いてください。
- 2. 試験開始の合図の後,まず解答用紙の受験番号欄に受験番号を記入し,該当番号をマークしてください。
- 3. 試験時間は150分(13:00~15:30)です。
- 4. 問題冊子は、1~17 ページまであります。**1~21** の問題の中に **1** ~ **25** の解答番号 があります。
- 5. 解答用紙は1枚で、マークシートになっています。解答は、解答用紙の解答記入欄にマークしてください。例えば、 1 と表示のある問題に対して3と解答する場合は、次の〔例〕のように番号1の解答記入欄の 3 にマークしてください。

[例] **番号** 解 答 記 入 欄 1 ① ② ● ① ⑤ ② ② ② ① ① ① ② ③ ⑥

- 6. 1 つの解答記入欄にマークは必ず 1 つだけにしてください。 2 つ以上マークした場合は不正解 とします。 また, マークシート・リーダーで読み取りますので解答用紙を汚したり, 折り曲げ たりしないよう注意してください。
- 7. 試験中に、問題冊子の印刷不鮮明、ページの落丁・乱丁および汚れ等により解答に支障がある場合には、手を挙げて監督者に知らせてください。
- 8. 試験終了後,解答用紙のみを回収します。問題冊子は持ち帰ってください。
- 9. 試験終了時刻までに解答が終わっても途中退室は認めません。

- $f(x)=x^3-6x-4$ について、以下の設問に答えなさい。
 - 設問1 f(x)=0 の 3 つの解を選びなさい。 1

 - 1. -1, $1 \pm \sqrt{3}$ 2. -1, $-1 \pm \sqrt{3}$
- 3. $-2, 1 \pm \sqrt{3}$
- 4. -2, $-1 \pm \sqrt{3}$ 5. -3, $1 \pm \sqrt{3}$
- 6. $-3, -1 \pm \sqrt{3}$

- 7. -1, $1 \pm \sqrt{2}$
- 8. $-1, -1 \pm \sqrt{2}$ 9. $-2, 1 \pm \sqrt{2}$
- 10. -2, $-1 \pm \sqrt{2}$ 11. -3, $1 \pm \sqrt{2}$
- 12. $-3, -1 \pm \sqrt{2}$
- aを実数とする。このとき方程式|f(x)|=aの異なる解の個数がちょうど 4 個となるすべて o_a を表す範囲を選びなさい。 2
 - 1. $2\sqrt{2} 4 < a < 2\sqrt{2} + 4$ 2. $2\sqrt{2} 3 < a < 2\sqrt{2} + 3$ 3. $2\sqrt{3} 2 < a < 2\sqrt{3} + 2$

- **4.** $2\sqrt{3} 1 < a < 2\sqrt{3} + 1$ **5.** $3\sqrt{2} 4 < a < 3\sqrt{2} + 4$ **6.** $3\sqrt{2} 3 < a < 3\sqrt{2} + 3$
- 7. $3\sqrt{3} 2 < a < 3\sqrt{2} + 2$ 8. $3\sqrt{3} 1 < a < 3\sqrt{2} + 3$ 9. $4\sqrt{2} 4 < a < 4\sqrt{2} + 4$

- 10. $4\sqrt{2} 3 < a < 4\sqrt{2} + 3$ 11. $4\sqrt{3} 2 < a < 4\sqrt{3} + 2$ 12. $4\sqrt{3} 1 < a < 4\sqrt{3} + 1$
- 設問3 y=|f(x)|とx軸で囲まれる部分の面積を選びなさい。 3
 - 1. $20\sqrt{3}-10$
- 2. $19\sqrt{3} 10$
- 3. $18\sqrt{3} 10$

- 4. $17\sqrt{3} 10$
- 5. $20\sqrt{2}-9$
- 6. $19\sqrt{2} 9$

- 7. $18\sqrt{2} 9$
- 8. $17\sqrt{2}-9$
- 9. $20\sqrt{3}-9$

- 10. $19\sqrt{3} 9$
- 11. $18\sqrt{3} 9$
- 12. $17\sqrt{3} 9$

点(1,1)を中心にもつ半径 1 の円と直線 y=mx との交点を $P(x_1,y_1)$, $Q(x_2,y_2)$ とする。ただし, m>0である。このとき、以下の設問に答えなさい。

 $(|x_1-x_2|, |y_1-y_2|)$ を選びなさい。 4

1.
$$\left(\frac{2^{\frac{1}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{1}{2}}m}{m^2+1}\right)$$

1.
$$\left(\frac{2^{\frac{1}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{1}{2}}m}{m^2+1}\right)$$
 2. $\left(\frac{2^{\frac{1}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{1}{2}}m^{\frac{3}{2}}}{m^2+1}\right)$ 3. $\left(\frac{2^{\frac{1}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{1}{2}}m^2}{m^2+1}\right)$

3.
$$\left(\frac{2^{\frac{1}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{1}{2}}m^2}{m^2+1}\right)$$

4.
$$\left(\frac{2m}{m^2+1}, \frac{2m}{m^2+1}\right)$$

4.
$$\left(\frac{2m}{m^2+1}, \frac{2m}{m^2+1}\right)$$
 5. $\left(\frac{2m}{m^2+1}, \frac{2m^{\frac{3}{2}}}{m^2+1}\right)$ 6. $\left(\frac{2m}{m^2+1}, \frac{2m^2}{m^2+1}\right)$

6.
$$\left(\frac{2m}{m^2+1}, \frac{2m^2}{m^2+1}\right)$$

7.
$$\left(\frac{2^{\frac{3}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{3}{2}}m}{m^2+1}\right)$$

$$8. \left(\frac{2^{\frac{3}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{3}{2}}m^{\frac{3}{2}}}{m^2+1}\right)$$

7.
$$\left(\frac{2^{\frac{3}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{3}{2}}m}{m^2+1}\right)$$
 8. $\left(\frac{2^{\frac{3}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{3}{2}}m^{\frac{3}{2}}}{m^2+1}\right)$ 9. $\left(\frac{2^{\frac{3}{2}}m^{\frac{1}{2}}}{m^2+1}, \frac{2^{\frac{3}{2}}m^2}{m^2+1}\right)$

10.
$$\left(\frac{2^2 m}{m^2 + 1}, \frac{2^2 m}{m^2 + 1}\right)$$

10.
$$\left(\frac{2^2 m}{m^2 + 1}, \frac{2^2 m}{m^2 + 1}\right)$$
 11. $\left(\frac{2^2 m}{m^2 + 1}, \frac{2^2 m^{\frac{3}{2}}}{m^2 + 1}\right)$ 12. $\left(\frac{2^2 m}{m^2 + 1}, \frac{2^2 m^2}{m^2 + 1}\right)$

12.
$$\left(\frac{2^2m}{m^2+1}, \frac{2^2m^2}{m^2+1}\right)$$

点 R(2,-2) と P, Q で作られる三角形の面積 S を選びなさい。 5

1.
$$\frac{2m^{\frac{1}{2}}(m+1)}{m^2+1}$$

2.
$$\frac{2m^{\frac{1}{2}}(m+1)^2}{m^2+1}$$

1.
$$\frac{2m^{\frac{1}{2}}(m+1)}{m^2+1}$$
 2. $\frac{2m^{\frac{1}{2}}(m+1)^2}{m^2+1}$ 3. $\frac{2^{\frac{3}{2}}m^{\frac{1}{2}}(m+1)}{m^2+1}$

4.
$$\frac{2^{\frac{3}{2}}m^{\frac{1}{2}}(m+1)^2}{m^2+1}$$
 5. $\frac{2^2m(m+1)}{m^2+1}$ 6. $\frac{2^2m(m+1)^2}{m^2+1}$

5.
$$\frac{2^2 m (m+1)}{m^2+1}$$

6.
$$\frac{2^2 m(m+1)^2}{m^2+1}$$

$$7. \quad \frac{2m(m+1)}{m^2+1}$$

8.
$$\frac{2m(m+1)^2}{m^2+1}$$

7.
$$\frac{2m(m+1)}{m^2+1}$$
 8. $\frac{2m(m+1)^2}{m^2+1}$ 9. $\frac{2^{\frac{3}{2}}m^{\frac{3}{2}}(m+1)}{m^2+1}$

10.
$$\frac{2^{\frac{3}{2}}m^{\frac{3}{2}}(m+1)^2}{m^2+1}$$

10.
$$\frac{2^{\frac{3}{2}}m^{\frac{3}{2}}(m+1)^2}{m^2+1}$$
 11. $\frac{2^2m^{\frac{3}{2}}(m+1)}{m^2+1}$ 12. $\frac{2^2m^{\frac{3}{2}}(m+1)^2}{m^2+1}$

12.
$$\frac{2^2 m^{\frac{3}{2}} (m+1)^2}{m^2+1}$$

面積 S の最大値を選びなさい。 6

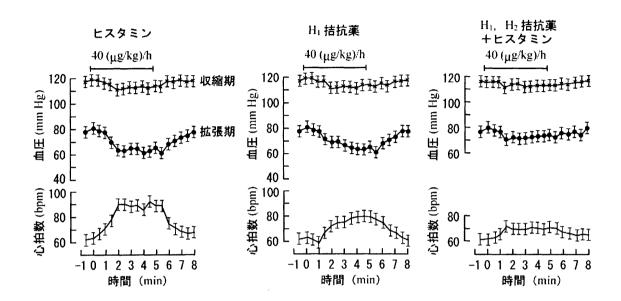
1.
$$\sqrt{2}$$

2.
$$\sqrt{3}$$

4.
$$\sqrt{6}$$

1.
$$\sqrt{2}$$
 2. $\sqrt{3}$ 3. 2 4. $\sqrt{6}$ 5. $2\sqrt{2}$ 6. $2\sqrt{3}$

6.
$$2\sqrt{3}$$

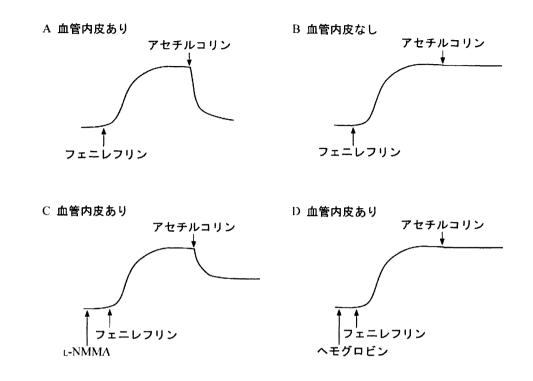

7. 4 8.
$$2\sqrt{6}$$
 9. $3\sqrt{2}$ 10. $3\sqrt{3}$ 11. 6 12. $3\sqrt{6}$

9.
$$3\sqrt{2}$$

10.
$$3\sqrt{3}$$

12.
$$3\sqrt{6}$$

3. 図はヒスタミン、ヒスタミン受容体拮抗薬(H_1 受容体拮抗薬、 H_2 受容体拮抗薬)が、ヒトの血圧および心拍数に及ぼす影響を示している。ヒスタミンは $40~(\mu g/kg)/h$ の速度で 5~分間静脈内投与した(各パネル上部)。 $a\sim i~$ のうち、正しいものを選びなさい。 $\boxed{7~}$

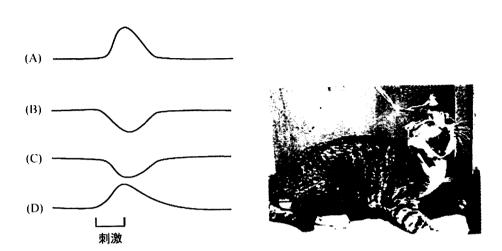


- a. ヒスタミンは、収縮期血圧および拡張期血圧を増加させる。
- b. ヒスタミンは、収縮期血圧および拡張期血圧を低下させる。
- c. ヒスタミンは収縮期血圧を増加させ、拡張期血圧を低下させる。
- d. ヒスタミンは収縮期血圧を低下させ、拡張期血圧を増加させる。
- e. ヒスタミンは心拍数を増加させる。
- f. ヒスタミンは心拍数を低下させる。
- g. ヒスタミンによる血圧および心拍数の変化は、ヒスタミン受容体拮抗薬によって拮抗されない。
- h. ヒスタミンによる血圧および心拍数の変化は、H₁受容体拮抗薬によってのみ拮抗される。
- i. ヒスタミンによる血圧および心拍数の変化は、 H_1 および H_2 受容体拮抗薬によって抑制される。

1.	a, c, d	2.	a, e, g	3.	a, f, h	4.	a, f, i
5.	b, e, g	6.	b, e, i	7.	b, f, h	8.	b, f, i
9.	c, e, g	10.	c, e, i	11.	c, f, g	12.	c, f, i
13.	d, e, g	14.	d, e, h	15.	d, e, i	16.	d, f, h

(図:Bertram G. Katzung 著,柳澤輝行ほか監訳『カッツング・薬理学』第8版,丸善,2002年より改変)

4. 図は,ラット大動脈のフェニレフリンによる等張収縮反応(上向きが収縮)に及ぼすアセチルコリン,L-NMNA,ヘモグロビンの影響を示している。 $a \sim g$ のうち,正しいものを選びなさい。 8

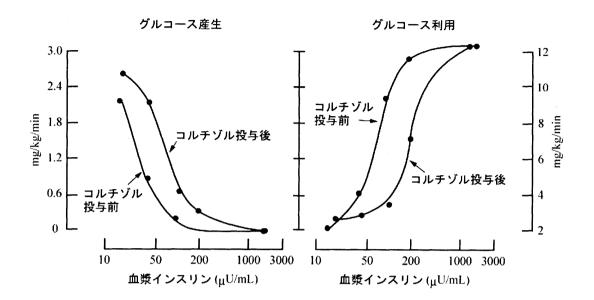


- a. アセチルコリンは,血管内皮存在下に血管を拡張させる。
- b. アセチルコリンは,血管内皮の有無に関わらず血管を拡張させる。
- c. アセチルコリンによる血管の拡張作用は、L-NMNAによって抑制されない。
- d. アセチルコリンによる血管の拡張作用は、ヘモグロビンによって抑制されない。
- e. 血管内皮は、アセチルコリン依存性に血管収縮物質を産生する。
- f. 血管内皮は、アセチルコリン依存性に血管拡張物質を産生する。
- g. L-NMNA とヘモグロビンの作用部位は異なる。

1.	a, c, d	2.	a, c, e	3.	a, c, g	4.	a, d, e
5.	a, d, f	6.	a, d, g	7.	a, e, g	8.	a, f, g
9.	b, c, d	10.	b, c, e	11.	b, c, f	12.	b, c, g
13.	b, d, e	14.	b, e, g	15.	b, f, g		

(図: Arthur C. Guyton, John E. Hall 著,早川弘一訳『ガイトン臨床生理学』医学書院、1999年より改変)

5. 図は、ネコの視床下部電気刺激によって生じる情動行動(攻撃、防御、遁走)の際に、しばしば 認められる血圧、腸運動、腸血流、骨格筋血流の変化を模式的に表したものである。a~g のうち、 正しいものを選びなさい。 9

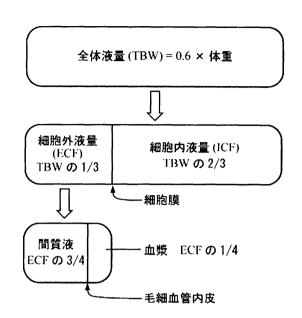


- a. (A)は腸運動を示す。
- b. (B)は血圧を示す。
- c. (C)は腸血流を示す。
- d. (D)は骨格筋血流を示す。
- e. 血圧は低下する。
- f. 腸運動は亢進する。
- g. 骨格筋血流は低下する。

1.	a, b	2.	a, c	3.	a, d	4.	a, e
5.	a, f	6.	a, g	7.	b, c	8.	b, d
9.	b, e	10.	b, f	11.	b, g	12.	c, d
13.	c. e	14.	c, f	15.	c, g	16.	d, e

(図:堀哲郎『脳と情動―感情のメカニズム』(ブレインサイエンス・シリーズ) 共立出版, 1991年より改変)

6. 図は24歳男性において、インスリンレベルの増加によるグルコース代謝回転(グルコース産生およびグルコース利用)に及ぼすコルチゾルの影響を示している。a~gのうち、コルチゾルの作用について正しいものを選びなさい。 10

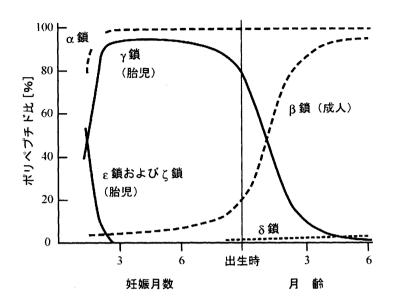

- a. グルコース産生を増加させる。
- b. グルコース利用を増加させる。
- c. 血漿グルコース濃度を低下させる。
- d. グルコース産生に対するインスリン作用感度を増加させる。
- e. グルコース利用に対するインスリン作用感度を低下させる。
- f. グルコース産生に対するインスリン作用の最大応答性を低下させる。
- g. グルコース利用に対するインスリン作用の最大応答性を低下させる。

1.	a, b	2.	a, c	3.	a, d	4.	a, e
5.	a, f	6.	a, g	7.	b, c	8.	b, d
9.	b, e	10.	b, f	11.	b, g	12.	c, d
13.	с, е	14.	c, f	15.	c, g	16.	d, e

(図: Robert M. Berne, Matthew N. Levy 著, 坂東武彦, 小山省三監訳『生理学』第3版, 西村書店, 1996年より)

7. 図は、体重 70 kg 成人の主要な体液区分を示している。a~g のうち、正しいものを選びなさい。

11



- a. 全体液量は35Lである。
- b. 細胞外液量=0.4×体重である。
- c. 細胞内液量=0.2×体重である。
- d. 間質液は 10.5 L である。
- e. 細胞内液量は28Lである。
- f. 間質液に結合組織の水は含まれない。
- g. 全体液量は毛細血管内皮によって2つに分けられる。

1.	a, b	2.	a, c	3.	a, d	4.	a, e
5.	a, f	6.	a, g	7.	b, c	8.	b, d
9.	b, e	10.	b, f	11.	b, g	12.	c, d
13.	c, e	14.	c, f	15.	c, g	16.	d, e

(図: Robert M. Berne, Matthew N. Levy 著, 坂東武彦, 小山省三監訳『生理学』第3版, 西村書店, 1996年より改変)

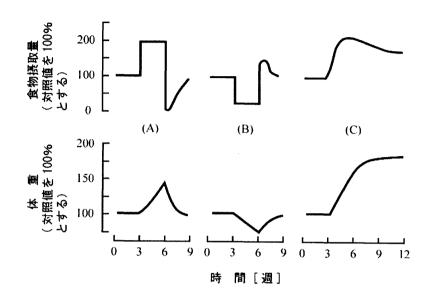
8. 酸素を運搬する機能を持つヘモグロビンは、2種類のポリペプチド鎖から構成されている。図は ヒトのヘモグロビン鎖の発育を示している。a~g のうち、正しいものを選びなさい。 12

- a. 胎児ヘモグロビンは、主に γ 鎖および β 鎖から構成されている。
- b. 胎児ヘモグロビンは、主に ε 鎖およびζ鎖から構成されている。
- \mathbf{c} . 成人へモグロビンは、主に α 鎖および β 鎖から構成されている。
- **d.** 成人へモグロビンは、主に β 鎖および δ 鎖から構成されている。
- e. 胎児ヘモグロビンは、母体から胎児への酸素移行を容易にする。
- f. 妊娠6ヶ月時に、胎児ヘモグロビンから成人ヘモグロビンへ変化する。
- g. 胎児ヘモグロビンと成人ヘモグロビンの酸素結合能に差はない。

1.	a, b	2.	a, c	3.	a, d	4.	a, e
5.	a, f	6.	a, g	7.	b, c	8.	b, d
9.	b, e	10.	b, f	11.	b, g	12.	c, d

15. c, g

16. d.e


(図: William F. Ganong 著, 星猛ほか訳『医科生理学展望』第19版, 丸善, 2000年より)

14. c, f

13. c.e

9. 図はラットの食物摂取量および体重の経時的変化を示している。(A)のラットは3週目から6週目の間,強制的に食物を摂らされ,その後自然状態におかれている。(B)のラットは3週目から6週目の間,絶食に近い状態におかれ,その後自然状態におかれている。(C)のラットは3週目に視床下部腹内側核が破壊され,その後自然状態におかれている。a~g のうち,正しいものを選びなさい。

13

- a. (A)のラットは6週目以降自然摂食量が増加する。
- b. (B)のラットは6週目以降自然摂食量が増加する。
- c. (C)のラットは3週目以降自然摂食量に変化は見られない。
- d. (A)のラットは6週目以降体重がさらに増加する。
- e. (B)のラットは6週目以降体重がさらに減少する。
- f. (C)のラットは3週目以降体重に変化は見られない。
- g. 視床下部腹内側核を電気刺激するとラットは摂食行動を中止する。

1.	a, b	2.	a, c	3.	a, d	4.	a, e
5.	a, f	6.	a, g	7.	b, c	8.	b, d
9.	b, e	10.	b, f	11.	b, g	12.	c, d
13.	c, e	14.	c, f	15.	C. g	16.	d e

(図: William F. Ganong 著, 星猛ほか訳『医科生理学展望』第 19 版, 丸善, 2000 年より)

10~15 までの問題において、必要ならば以下の値および 12、13 ページの常用**さ数表を**車. なるい。 $\log 2 = 0.30$ 、 $\log 3 = 0.48$ 、 $\log 4 = 0.60$ 、 $\log 5 = 0.70$ 、 $\log 6 = 0.78$ 、 $\log 7 = 0.85$ 、 $\log 8 = 0$ % $\log 9 = 0.95$

- **10.** DNA の塩基の 1 つであるアデニンは共鳴構造を有する。アデニンの構造におここ C 4 と C 5 炭素を結ぶ結合長はいくらか。最も近い値を選びなさい。ただし、C C 単端音長 こ S A. C C 二重結合長は 1.34 Å とする。 14
 - 1. 0.2 Å
- 2. 0.4 Å
- 3. 0.6 Å
- 4. 0.8 Å

- 5. 1.0 Å
- 6. 1.1 Å
- 7. 1.2 Å
- 8. 1.4 Å

- 9. 1.6 Å
- 10. 1.8 Å
- 11. 2.0 Å
- 12. 22 A

- 13. 2.4 Å
- 14. 2.6 Å
- 15. 2.8 Å
- 16. 2.88 Å
- 11. 濃度 0.5 M の酸 HA 溶液が 0.2%解離した時, pKa 値はどうなるか。最も近い値を遺びなさい。

15

- 1. 2.2
- 2. 2.7
- **3.** 2.9
- 4. 3.1

- **5.** 3.4
- **6.** 3.6
- 7. 3.9
- 8. 4.0

- 9. 4.3
- 10. 4.6
- 11. 5.1
- 12, 5.3

- 13. 5.7
- 14. 6.2
- 15. 6.5
- 16. 6.7
- 12. プロトン化状態と脱プロトン化状態で色素が異なる $1.2 \times 10^{-3}\,\mathrm{M}$ の溶液がある。この溶液の脱プロトン化型の色素濃度が $9 \times 10^{-4}\,\mathrm{M}$ で残りの色素が全てプロトン化型であった場合、この溶液のpH はどうなるか。最も近い値を選びなさい。ただし、この溶液のpKa 値は7.8 とする。 16
 - 1. 7.0
- 2. 7.1
- 3. 7.3
- 4. 7.5

- 5. 7.7
- **6.** 7.9
- 7. 8.0
- 8. 8.1

- 9. 8.3
- 10. 8.5
- 11. 8.7
- 12, 8.9

- 13. 9.0
- **14.** 9.1
- 15. 9.3
- 16. 9.5

13. 大きさが 40 kDa の蛋白質における 660 nm でのモル吸光係数が 12,000 M^{-1} cm $^{-1}$ であった。濃度 0.5 mg/mL のこの蛋白質溶液では光路長 1 cm において入射光の何%が透過するか。最も近い値を選びなさい。ただし, $A=\epsilon lc$ (A= 吸光度, $\epsilon=$ モル吸光係数, l= 光路長, c= 濃度(M)), $A=\log_{10}\left(I_0/I\right)$ (A= 吸光度, $I_0=$ 入射光の強度, I= 透過光の強度)とする。 17

1. 12 2. 18 **3.** 24 4. 28 5. 31 6. 39 7. 46 8. 48 9. 51 11. 65 12. 68 10. 57 13. 71 14. 76 15. 82 16. 88

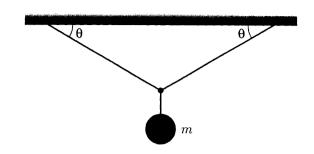
- 14. a~d のうち, ミトコンドリアおよびミトコンドリアが関連する反応について正しいものを選びなさい。 18
 - a. 解糖系やクエン酸回路で ATP が得られる反応のように、ある基質のリン酸基が酵素反応によって ADP に転位し ATP となることを、基質レベルのリン酸化といい、これに対し電子伝達系で H^{\dagger} の濃度勾配を利用し ATP を生成する過程を酸化的リン酸化という。
 - b. 解糖系で生じたピルビン酸は、ミトコンドリア内膜に存在するピルビン酸輸送体でミトコンドリアのクリステに取り込まれる。
 - c. 解糖系で生じた NADH はミトコンドリアの内膜を透過することができないため、他の代謝反応と共役させて NADH がもつ電子だけを透過させるシャトルという方法をとる。
 - d. 脂肪酸はアシル-CoA に活性化され、ミトコンドリア内部のマトリックスに存在する β 酸化系によりアセチル-CoA に分解される。

1. a 2. b 3. c 4. d 5. a, b 7. a, d 6. a, c 8. b.c 9. b, d 10. c, d 11. a, b, c 12. a, b, d 13. a, c, d 14. b, c, d 15. a, b, c, d 16. すべて誤り

15. 1個あたりの標準重量が $5 \, \mathrm{g}$ で 20 kcal の食品があったとする。この食品を $8 \, \mathrm{dl}$ 摂取した場合,この熱量を消費するために約何分間のランニングが必要か。最も近い値を選びなさい。ただし,ランニングによる燃料消費増加量を $250 \, \mathrm{W}$ とし, $1 \, \mathrm{J/s}$ は $0.239 \, \mathrm{cal/s}$ とする。 19

1. 20分 **2.** 25分 3. 30分 4. 35 分 5. 40分 6. 45分 7. 50分 8. 55分 9. 60分 10.65分 11.70分 12. 75分 13. 80分 14.85分 15. 90分 16. 95分

4桁の常用対数表(1)

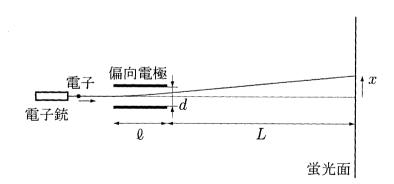

上位					3 桁					
2桁	0	1	2	3	4	5	6	7	8	9
10	0	43	86	128	170	212	253	294	334	374
11	414	453	492	531	569	607	645	682	719	755
12	792	828	864	899	934	969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474

たとえば log2.50 の小数部分は, 第1列が 25 である行の, 第2列の数 3979 により与えられる。

4桁の常用対数表(2)

上位			3桁目							
2桁	0	1	2	3	4	5	6	7	8	9
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996

16. 非常に軽い糸を使って、質量m=2 kg の錘を吊り下げる(図)。この糸は張力が 20 N を超えると切れてしまう。糸が切れずにすむ角度 θ の最小値に最も近い値(単位:度)を選びなさい。計算には 17 ページの三角関数表を用いなさい。 20


- 1. 0°
- 2. 5°
- 3. 10°
- 4. 15°

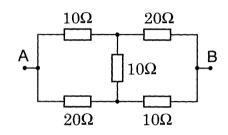
- **5.** 20°
- 6. 25°
- 7. 30°
- 8. 35°

- **9.** 40°
- 10. 45°
- 11. 50°
- 12. 55°

- 13. 60°
- 14. 65°
- 15. 70°
- 16. 75°

17. ブラウン管の原理を図に示す。電子銃から打ち出された電子は、偏向電極板の間の静電場によって進路を曲げられて蛍光面に到達する。電極間の電位差を変えることにより、偏向x(中心からのずれ)をコントロールする。電極間に入射する電子の運動エネルギーを 1 keV(静止していた電子が 1 kV の電位差で加速されたときに得るエネルギー),偏向電極板の間隔 d と幅 ℓ をそれぞれ 1 cm、4 cm、蛍光面までの距離 ℓ を ℓ 20 cm として,偏向 ℓ が ℓ cm となるために電極間にかけるべき電圧に最も近い値を選びなさい。 21

- 1. 1 V
- 2. 2 V
- 3. 5 V
- 4. 10 V


- 5. 20 V
- 6. 50 V
- 7. 0.1 kV
- 8. 0.2 kV

- 9. 0.5 kV
- 10. 1 kV
- 11. 2 kV
- 12. 5 kV

- 18. 内容積 46.7 L のボンベに窒素が充填されている。1 気圧の下で窒素を使い切ったとき、ボンベの中に残留している窒素分子の数に最も近い値を選びなさい。ただし、このときのボンベと窒素の温度を300 K としなさい。 22
 - 1. 104個
- **2.** 10⁶個
- **3.** 10⁸個
- **4.** 10¹⁰ 個

- 5. 1012個
- 6. 1014個
- 7. 10¹⁶個
- 8. 10¹⁸個

- 9. 10²⁰個
- 10. 10²²個
- 11. 10²⁴個
- 12. 10²⁶個
- 19. 図の回路の端子 A-B 間の合成抵抗値に最も近いものを選びなさい。 23

- 1. 5Ω
- 2. 10Ω
- 3. 15Ω
- 4. 20 Ω

- 5. 25Ω
- **6.** 30 Ω
- 7. 35Ω
- 8. 40Ω

- 9. 45Ω
- 10. 50Ω
- 11. 55Ω
- 12. 60Ω
- 20. ある恒星について、水素に特異的なスペクトル線の波長を観測したところ 656.6 nm であった。 同じスペクトル線を、太陽について観測すると 656.3 nm である。この恒星は太陽系からどれだけの 速度で遠ざかりつつあるか。光速度に対する比の値(単位:%)で最も近いものを選びなさい。

24

- 1. 0.001 %
- 2. 0.002 %
- 3. 0.005 %
- 4. 0.01 %

- 5. 0.02 %
- **6.** 0.05 %
- 7. 0.1 %
- 8. 0.2 %

- 9. 0.5 %
- 10. 1%
- 11. 2%
- 12. 5%

21. a~d のうち,正しいものを選びなさい。 **25**

- a. 原子核の大きさは、おおよそ1Åである。
- b. β 壊変とは、最外殻電子が放出される崩壊である。
- c. 陽子と中性子の質量は、どちらもおおよそ1.7×10⁻²⁷ kg である。
- d. 放射能とは、物質が自発的に放射線を放出する性質を指す。

1.	а	2.	b	3.	c	4.	d
5.	a, b	6.	a, c	7.	a, d	8.	b, c
9.	b, d	10.	c, d	11.	a, b, c	12.	a, b, d
13.	a, c, d	14.	b, c, d	15.	a, b, c, d	16.	すべて誤り

三角関数表

θ[°]	$\sin \theta$	$\cos \theta$	an heta	θ[°]	$\sin \theta$	$\cos \theta$	an heta
0	0.0000	1.0000	0.0000				
1	0.0175	0.9998	0.0175	46	0.7193	0.6947	1.0355
2	0.0349	0.9994	0.0349	47	0.7314	0.6820	1.0724
3	0.0523	0.9986	0.0524	48	0.7431	0.6691	1.1106
4	0.0698	0.9976	0.0699	49	0.7547	0.6561	1.1504
5	0.0872	0.9962	0.0875	50	0.7660	0.6428	1.1918
6	0.1045	0.9945	0.1051	51	0.7771	0.6293	1.2349
7	0.1219	0.9925	0.1228	52	0.7880	0.6157	1.2799
8	0.1392	0.9903	0.1405	53	0.7986	0.6018	1.3270
9	0.1564	0.9877	0.1584	54 55	0.8090	0.5878	1.3764
10	0.1736	0.9848	0.1763] [0.8192	0.5736	1.4281
11	0.1908	0.9816	0.1944	56	0.8290	0.5592	1.4826
12	0.2079 0.2250	0.9781 0.9744	0.2126 0.2309	57 58	0.8387 0.8480	0.5446 0.5299	1.5399 1.6003
14	0.2230	0.9744	0.2309	59	0.8480	0.5299	1.6643
15	0.2588	0.9659	0.2493	60	0.8572	0.5100	1.7321
16	0.2756	0.9613	0.2867	61	0.8746	0.4848	1.8040
17	0.2730	0.9563	0.2867	62	0.8740	0.4695	1.8807
18	0.3090	0.9511	0.3249	63	0.8910	0.4540	1.9626
19	0.3256	0.9455	0.3443	64	0.8988	0.4384	2.0503
20	0.3420	0.9397	0.3640	65	0.9063	0.4226	2.1445
21	0.3584	0.9336	0.3839	66	0.9135	0.4067	2.2460
22	0.3746	0.9272	0.4040	67	0.9205	0.3907	2.3559
23	0.3907	0.9205	0.4245	68	0.9272	0.3746	2.4751
24	0.4067	0.9135	0.4452	69	0.9336	0.3584	2.6051
25	0.4226	0.9063	0.4663	70	0.9397	0.3420	2.7475
26	0.4384	0.8988	0.4877	71	0.9455	0.3256	2.9042
27	0.4540	0.8910	0.5095	72	0.9511	0.3090	3.0777
28	0.4695	0.8829	0.5317	73	0.9563	0.2924	3.2709
29	0.4848	0.8746	0.5543 0.5774	74 75	0.9613 0.9659	0.2756	3.4874 3.7321
}	0.5000	0.8660		į i		0.2588	
31	0.5150	0.8572	0.6009	76	0.9703	0.2419	4.0108
32 33	0.5299 0.5446	0.8480 0.8387	0.6249 0.6494	77 78	0.9744 0.9781	0.2250 0.2079	4.3315 4.7046
33	0.5592	0.8387	0.6745	79	0.9781	0.2079	5.1446
35	0.5736	0.8192	0.7002	80	0.9848	0.1736	5.6713
36	0.5878	0.8090	0.7265	81	0.9877	0.1564	6.3138
37	0.5078	0.3036	0.7536	82	0.9903	0.1304	7.1154
38	0.6157	0.7880	0.7813	83	0.9925	0.1219	8.1443
39	0.6293	0.7771	0.8098	84	0.9945	0.1045	9.5144
40	0.6428	0.7660	0.8391	85	0.9962	0.0872	11.4301
41	0.6561	0.7547	0.8693	86	0.9976	0.0698	14.3007
.42	0.6691	0.7431	0.9004	87	0.9986	0.0523	19.0811
43	0.6820	0.7314	0.9325	88	0.9994	0.0349	28.6363
44	0.6947	0.7193	0.9657	89	0.9998	0.0175	57.2900
45	0.7071	0.7071	1.0000	90	1.0000	0.0000	∞